一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

融入空間關(guān)系的GMM全色高分辨率遙感影像監(jiān)督分割方法

王春艷 徐愛功 孫川 趙雪梅

王春艷, 徐愛功, 孫川, 趙雪梅. 融入空間關(guān)系的GMM全色高分辨率遙感影像監(jiān)督分割方法[J]. 電子與信息學(xué)報, 2017, 39(5): 1071-1078. doi: 10.11999/JEIT160798
引用本文: 王春艷, 徐愛功, 孫川, 趙雪梅. 融入空間關(guān)系的GMM全色高分辨率遙感影像監(jiān)督分割方法[J]. 電子與信息學(xué)報, 2017, 39(5): 1071-1078. doi: 10.11999/JEIT160798
WANG Chunyan, XU Aigong, SUN Chuan, ZHAO Xuemei. Surpervised Segmentation Algorithm Based on GMM with Spatial Relationship for High Resolution Ranchromatic Remote Sensing Image[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1071-1078. doi: 10.11999/JEIT160798
Citation: WANG Chunyan, XU Aigong, SUN Chuan, ZHAO Xuemei. Surpervised Segmentation Algorithm Based on GMM with Spatial Relationship for High Resolution Ranchromatic Remote Sensing Image[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1071-1078. doi: 10.11999/JEIT160798

融入空間關(guān)系的GMM全色高分辨率遙感影像監(jiān)督分割方法

doi: 10.11999/JEIT160798 cstr: 32379.14.JEIT160798
基金項(xiàng)目: 

遼寧省教育廳一般項(xiàng)目(LJYL036, LJYL012),教育部高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20122121110007)

Surpervised Segmentation Algorithm Based on GMM with Spatial Relationship for High Resolution Ranchromatic Remote Sensing Image

Funds: 

The General Science Research Project of Education Bureau of Liaoning Province (LJYL036, LJYL012), The Research Fund for the Doctoral Program of Higher Education of China (20122121110007)

  • 摘要: 為了解決高分辨率遙感影像中相同地物目標(biāo)異質(zhì)性和空間破碎性增大及不同地物目標(biāo)的相似性增強(qiáng)所帶來的分割新問題,該文提出一種融入空間關(guān)系的高斯混合模型(GMM)高分辨遙感影像監(jiān)督分割方法。該方法首先按分割區(qū)域進(jìn)行監(jiān)督采樣,并通過最小二乘法進(jìn)行直方圖擬合,對影像中的每個類別區(qū)域建立GMM用來精確表征高分辨遙感影像每個分割區(qū)域復(fù)雜的地物光譜特征;然后在GMM的概率測度域融入空間關(guān)系,使每個像素的區(qū)域所屬由該像素鄰域窗口內(nèi)所有像素概率測度共同決定,以刻畫高分辨率遙感影像中像素間的空間相關(guān)性;最后按照最大概率測度原則完成對高分辨率遙感影像的分割。為了驗(yàn)證文中算法的可行性與有效性分別對合成影像及真實(shí)高分辨率遙感影像進(jìn)行分割實(shí)驗(yàn),并和經(jīng)典的FCM方法及HMRF-FCM方法進(jìn)行對比,定量與定性的結(jié)果證明了文中方法能夠提高分割精度。
  • BRUZZONE L and CARLIN L. A multilevel context-based system for classification of very high spatial resolution images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600. doi: 10.1109/TGRS.2006.875360.
    ACAR E and SELIM A. Anomaly detection with sparse unmixing and Gaussianmixture modeling of hyperspectral images[C]. IEEE Conference Publications, Italy, Milan, 2015: 5035-5038. doi: 10.1109/IGARSS.2015.7326964.
    BRYAN P and DANIEL W. Bliss estimation information bounds using the I-MMSE formula and Gaussian mixture models[C]. Annual Conference on Information Science and Systems, Princeton, NJ, 2016: 274-279. doi: 10.1109/CISS. 2016.7460514.
    WANG Xiaoyan, WANG Yangsheng, and FENG Xuetao, et al. Adaptive gaussian mixture models mased facial actions tracking[C]. International Conference on Computer Science and Software Engineering, Wuhan, China, 2008, 2: 923-926. doi: 10.1109/CSSE.2008.648.
    WILSON S, KURUOGLU E, and SALERNO E. Fully bayesian source separation of astrophysical images modelled by mixture of gaussians[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(5): 685-696. doi: 10.1109/ JSTSP.2008.2005320.
    AVI M and YUVAL B S. Gaussian mixture models for speaker-recognition[J]. IET Journals Magazines, 2014, 8(8): 860-867. doi: 10.1049/iet-spr.2013.0270.
    ZIVKOVIC Z. Improved adaptive gaussian mixture model for background subtraction[C]. Proceedings of International Conference on Pattern Recognition, 2004, 2: 28-31. doi: 10. 1109/ICPR.2004. 1333992.
    TAO Wenbing and SUN Kun. Robust point sets mtching by fusing feature and spatial information using nonuniform gaussian mixture models[J]. EEE Transactions on Image Processing, 2015, 24(11): 3754-3767. doi: 10.1109/TIP.2015. 2449559.
    SFIKAS G, NIKOU C, and HEINRICH C, et al. Spatially varying mixtures incorporating line processes for image segmentation[J]. Journal of Marhematical Imaging and Vision, 2010, 36(2): 91-110. doi: 10.1007/s10851-009-0174-x.
    MITRA S. Gaussian mixture models for human face recognition under illumination variations[J]. Applied Mathematics, 2012, 3: 2071-2079. doi: 10.4236/am.2012. 312A286.
    Nadia Z, Hayet B, HAYET B, et al. Voice interaction using Gaussian mixture models for augmented reality applications[C]. 2015 4th International Conference on Electrical Engineering, Boumerdes, Algeria, 2015: 1-4. doi: 10.1109/INTEE.2015.7416773.
    GROOSS R, YANG J, and WAIBEL A. Growing Gaussian mixture models for pose invariant face recognition[C]. Proceedings 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000, 1: 1088-1091. doi: 10.1109/ICPR.2000.905661.
    MONTAZERI GHAHJAVERESTAN M, MASOUDI S, SHAMSOLLAHI M B, et al. Coupled hidden markov model-based method for apnea bradycardia detection[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(2): 527-538. doi: 10.1109/JBHI.2015.2405075.
    GEMAN D and GEMAN D. Stochastic relaxation, gibbs distributions and the bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741. doi: 10.1109/TPAMI.1984.4767596.
    趙雪梅, 李玉, 趙泉華. 結(jié)合高斯回歸模型和隱馬爾可夫隨機(jī)場的模糊聚類圖像分割[J]. 電子與信息學(xué)報, 2014, 36(11): 2730-2736. doi: 10.3724/SP.J.1146.2013.01751.
    ZHAO Xuemei, LI Yu, and ZHAO Quanhua. Image segmentation by fuzzy clustering algorithm combining hidden markov random field and Gaussian regression model[J]. Journal of Electronics and Information Technology, 2014, 36(11): 2730-2736. doi: 10.3724/SP.J.1146.2013.01751.
    CHOI H S, HARNOR D R, and KIM Y. Partial volume tissue classification of multichannel magnetic resonance imagesA mixel model[J]. IEEE Transactions on Medical Imaging, 1991, 10(3): 395-407. doi: 10.1109/42.97590.
    AMIR H and JOSEP P. A doubly hierarchical dirichlet process hidden markov model with a non-ergodic structure[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016. 24(1): 174-184. doi: 10.1109/TASLP.2015. 2500732.
    NGUYEN T M, WU Q M, and AHUJA S. An extension of the standard mixture model for image segmentation[J]. IEEE Transactions on Neural Networks, 2010, 21(8): 1326-1338. doi: 10.1109/TNN.2010.2054109.
    熊濤, 姜萬壽, 李樂林. 基于高斯混合模型的遙感影像半監(jiān)督分類[J]. 武漢大學(xué)學(xué)報(信息科學(xué)版), 2011, 36(1): 108-112.
    XIONG Tao, JIANG Wanlin, and LI Lelin. Gauss mixtre model based semi supervised classifiction for remote rensing image[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 108-112.
  • 加載中
計量
  • 文章訪問數(shù):  1570
  • HTML全文瀏覽量:  167
  • PDF下載量:  303
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-07-26
  • 修回日期:  2017-01-10
  • 刊出日期:  2017-05-19

目錄

    /

    返回文章
    返回