一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

流行度演化分析與預(yù)測(cè)綜述

胡穎 胡長(zhǎng)軍 傅樹深 黃建一

胡穎, 胡長(zhǎng)軍, 傅樹深, 黃建一. 流行度演化分析與預(yù)測(cè)綜述[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
引用本文: 胡穎, 胡長(zhǎng)軍, 傅樹深, 黃建一. 流行度演化分析與預(yù)測(cè)綜述[J]. 電子與信息學(xué)報(bào), 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
HU Ying, HU Changjun, FU Shushen, HUANG Jianyi. Survey on Popularity Evolution Analysis and Prediction[J]. Journal of Electronics & Information Technology, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743
Citation: HU Ying, HU Changjun, FU Shushen, HUANG Jianyi. Survey on Popularity Evolution Analysis and Prediction[J]. Journal of Electronics & Information Technology, 2017, 39(4): 805-816. doi: 10.11999/JEIT160743

流行度演化分析與預(yù)測(cè)綜述

doi: 10.11999/JEIT160743 cstr: 32379.14.JEIT160743
基金項(xiàng)目: 

國(guó)家973規(guī)劃項(xiàng)目(2013CB329601)

Survey on Popularity Evolution Analysis and Prediction

Funds: 

The National 973 Program of China (2013CB329601)

  • 摘要: 社交網(wǎng)絡(luò)每天以爆發(fā)式的增長(zhǎng)速率產(chǎn)生著大量信息,但是人們對(duì)海量信息的關(guān)注程度有限。人們關(guān)注哪些信息、對(duì)信息的關(guān)注程度如何隨時(shí)間變化,即為信息的流行度演化問題。流行度演化反映了人們的關(guān)注點(diǎn)和信息的流動(dòng)與傳播。建模與預(yù)測(cè)網(wǎng)絡(luò)信息的流行度演化有助于信息傳播和人類行為的研究、輔助輿情監(jiān)控、并帶來極大的應(yīng)用和商業(yè)價(jià)值。近幾年,研究人員在該方面取得了豐碩的研究成果,但尚缺乏對(duì)這些成果進(jìn)行梳理、總結(jié)的綜述。該文系統(tǒng)地回顧網(wǎng)絡(luò)信息流行度演化的主要工作,對(duì)分析與預(yù)測(cè)方法、模型、發(fā)展脈絡(luò)進(jìn)行梳理。首先從定性和定量方面闡述了流行度演化的特點(diǎn);介紹如何量化影響流行度演化的眾多因素,并對(duì)它們進(jìn)行分類、總結(jié);然后將已有的建模和預(yù)測(cè)方法歸納為3類:基于早期流行度、基于影響因素、基于級(jí)聯(lián)傳播,從原理、典型成果、特點(diǎn)比較、適用范圍等方面對(duì)這3類方法進(jìn)行評(píng)述;最后根據(jù)目前模型和方法的特點(diǎn)以及現(xiàn)實(shí)需求,指出了未來流行度演化的研究方向。
  • WU F and HUBERMAN B A. Popularity, novelty and attention[C]. Proceedings of the 9th ACM Conference on Electronic Commerce, Chicago, 2008: 240-245. doi: 10.1145/ 1386790.1386828.
    WU F and HUBERMAN B A. Novelty and collective attention[J]. Proceedings of the National Academy of Sciences, 2007, 104(45): 17599-17601. doi: 10.1073/pnas.0704916104.
    HONG L, DAN O, and Davison B D. Predicting popular messages in twitter[C]. Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, 2011: 57-58. doi: 10.1145/1963192.1963222.
    YANG J and LESKOVEC J. Patterns of temporal variation in online media[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 177-186. doi: 10.1145/1935826.1935863.
    吳信東, 李毅, 李磊. 在線社交網(wǎng)絡(luò)影響力分析[J]. 計(jì)算機(jī)學(xué)報(bào), 2014, 37(4): 735-751.
    WU Xindong, LI Yi, and LI Lei. Influence analysis of online social networks[J]. Chinese Journal of Computers, 2014, 37(4): 735-751.
    KEMPE D, KLEINBERG J, and TARDOS. Maximizing the spread of influence through a social network[C]. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003: 137-146. doi: 10.1145/956750.956769.
    LERMAN K. Social information processing in news aggregation[J]. IEEE Internet Computing, 2007, 11(6): 16-28. doi 10.1109/mic.2007.136.
    BORGHOL Y, ARDON S, CARLSSON N, et al. The untold story of the clones: content-agnostic factors that impact YouTube video popularity[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 1186-1194. doi 10.1145/ 2339530.2339717.
    KONG S, MEI Q, FENG L, et al. Predicting bursts and popularity of hashtags in real-time[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 927-930. doi: 10.1145/2600428.2609476.
    HE X, GAO M, KAN M Y, et al. Predicting the popularity of Web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi 10.1145/2600428.2609558.
    SZABO G and HUBERMAN B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88. doi: 10.1145/1787234.1787254.
    AGARWAL N, LIU H, TANG L, et al. Identifying the influential bloggers in a community[C]. Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, 2008: 207-218. doi: 10.1145/1341531. 1341559.
    BANDARI R, ASUR S, and HUBERMAN B A. The pulse of news in social media: Forecasting popularity[C]. Proceedings of the 6th International AAAI Conference on Web and Social Media, Dublin, 2012: 26-33.
    CHATZOPOULOU G, SHENG C, and FALOUTSOS M. A first step towards understanding popularity in YouTube[C]. INFOCOM IEEE Conference on Computer Communications Workshops, San Diego, 2010: 1-6. doi 10.1109/infcomw. 2010.5466701.
    ROY S D, MEI T, ZENG W, et al. Towards cross-domain learning for social video popularity prediction[J]. IEEE Transactions on Multimedia, 2013, 15(6): 1255-1267. doi 10.1109/tmm.2013.2265079.
    JAMALI S and RANGWALA H. Digging Digg: Comment mining, popularity prediction, and social network analysis[C]. IEEE International Conference on Web Information Systems and Mining, Shanghai, 2009: 32-38. doi 10.1109/wism. 2009.15.
    YIN P, LUO P, WANG M, et al. A straw shows which way the wind blows: ranking potentially popular items from early votes[C]. Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, 2012: 623-632. doi: 10.1145/2124295.2124370.
    CHA M, KWAK H, RODRIGUEZ P, et al. I tube, you tube, everybody tubes: Analyzing the world,s largest user generated content video system[C]. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, New York, 2007: 1-14. doi: 10.1145/1298306.1298309.
    CRANE R and SORNETTE D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences, 2008, 105(41): 15649-15653. doi: 10.1073/pnas.0803685105.
    CRANE R and SORNETTE D. Viral, quality, junk videos on YouTube: Separating content from noise in an information- rich environment[C]. AAAI Spring Symposium 2008: Social Information Processing, Stanford, 2008: 18-20.
    FIGUEIREDO F. On the prediction of popularity of trends and hits for user generated videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 741-746. doi: 10.1145/2433396. 2433489.
    ASUR S, HUBERMAN B A, SZABO G, et al. Trends in social media: Persistence and decay[OL]. Available at SSRN 1755748, 2011. doi: 10.2139/ssrn.1755748.
    FIGUEIREDO F, BENEVENUTO F, and ALMEIDA J M. The tube over time: Characterizing popularity growth of YouTube videos[C]. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 2011: 745-754. doi: 10.1145/1935826.1935925.
    CHENG J, ADAMIC L A, KLEINBERG J M, et al. Do cascades recur?[C]. Proceedings of the 25th International Conference on World Wide Web. Montreal, 2016: 671-681. doi: 10.1145/2872427.2882993.
    MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: Model and implications[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, 2012: 6-14. doi: 10.1145/2339530.2339537.
    YU H, XIE L, and SANNER S. The lifecycle of a YouTube video: Phases, content and popularity[C]. 9th International AAAI Conference on Web and Social Media, Oxford, 2015.
    SALGANIK M J, DODDS P S, and WATTS D J. Experimental study of inequality and unpredictability in an artificial cultural market[J]. Science, 2006, 311(5762): 854-856. doi: 10.1126/science.1121066.
    LERMAN K and GALSTYAN A. Analysis of social voting patterns on digg[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, 2008: 7-12. doi: 10.1145/ 1397735.1397738.
    CHANG B, ZHU H, GE Y, et al. Predicting the popularity of online serials with autoregressive models[C]. Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, 2014: 1339-1348. doi: 10.1145/2661829.2662055.
    PINTO H, ALMEIDA J M, and GONCALVES M A. Using early view patterns to predict the popularity of YouTube videos[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 365-374. doi: 10.1145/2433396.2433443.
    TAN Z, WANG Y, ZHANG Y, et al. A novel time series approach for predicting the long-term popularity of online videos[J]. IEEE Transactions on Broadcasting, 2016, 62(2): 436-445. doi: 10.1109/TBC.2016.2540522.
    WU J, ZHOU Y, CHIU D M, et al. Modeling dynamics of online video popularity[J]. IEEE Transactions on Multimedia, 2016, 18(9): 1882-1895. doi: 10.1109/TMM.2016.2579600.
    LI H, MA X, WANG F, et al. On popularity prediction of videos shared in online social networks[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 169-178. doi: 10.1145/2505515.2505523.
    TATAR A, LEGUAY J, ANTONIADIS P, et al. Predicting the popularity of online articles based on user comments[C]. Proceedings of the International Conference on Web Intelligence, Mining and Semantics, Sogndal, 2011: 1-8. doi: 10.1145/1988688.1988766.
    SIERSDORFER S, CHELARU S, NEJDL W, et al. How useful are your comments?: Analyzing and predicting YouTube comments and comment ratings[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 891-900. doi: 10.1145/1772690.1772781.
    HE X, GAO M, KAN M Y, et al. Predicting the popularity of web 2.0 items based on user comments[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, 2014: 233-242. doi: 10.1145/2600428.2609558.
    MA Z, SUN A, and CONG G. On predicting the popularity of newly emerging hashtags in twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. doi: 10.1002/asi.22844.
    KHOSLA A, DAS SARMA A, and HAMID R. What makes an image popular?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 867-876. doi 10.1145/2566486.2567996.
    BAO P, SHEN H W, HUANG J, et al. Popularity prediction in microblogging network: A case study on sina weibo[C]. Proceedings of the 22nd International Conference on World Wide Web Companion, Rio de Janeiro, 2013: 177-178. doi 10.1145/2487788.2487877.
    LERMAN K and HOGG T. Using a model of social dynamics to predict popularity of news[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, 2010: 621-630. doi: 10.1145/1772690.1772754.
    ZHAO Q, ERDOGDU MA, HE HY, et al. SEISMIC: A self-exciting point process model for predicting tweet popularity[C]. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, 2015: 1513-1522. doi: 10.1145/2783258. 2783401.
    LEE J G, MOON S, and SALAMATIAN K. An approach to model and predict the popularity of online contents with explanatory factors[C]. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, London, 2010, 1: 623-630. doi: 10.1109/WI-IAT.2010.209.
    AHMED M, SPAGNA S, HUICI F, et al. A peek into the future predicting the evolution of popularity in user generated content[C]. Proceedings of the 6th ACM International Conference on Web Search and Data Mining, San Francisco, 2013: 607-616. doi: 10.1145/2433396.2433473.
    FIGUEIREDO F, ALMEIDA J M, GONCALVES M A, et al. TrendLearner: Early prediction of popularity trends of user generated content[J]. Information Sciences, 2016: 349-350, 172-187. doi: 10.1016/j.ins.2016.02.025.
    GRUHL D, GUHA R, LIBEN-NOWELL D, et al. Information diffusion through blogspace[C]. Proceedings of the 13th International Conference on World Wide Web, New York, 2004: 491-501. doi: 10.1145/988672.988739.
    YANG J and LESKOVEC J. Modeling information diffusion in implicit networks[C]. IEEE 10th International Conference on Data Mining, Sydney, 2010: 599-608. doi: 10.1109/icdm. 2010.22.
    ZHAO J, WU J, FENG X, et al. Information propagation in online social networks: A tie-strength perspective[J]. Knowledge and Information Systems, 2012, 32(3): 589-608. doi: 10.1007/s10115-011-0445-x.
    CHENG J, ADAMIC L, DOW P, et al. Can cascades be predicted?[C]. Proceedings of the 23rd International Conference on World Wide Web, Seoul, 2014: 925-936. doi: 10.1145/2566486.2567997.
    KUPAVSKII A, OSTROUMOVA L, UMNOV A, et al. Prediction of retweet cascade size over time[C]. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Sheraton, 2012: 2335-2338. doi: 10.1145/2396761.2398634.
    ARDON S, BAGCHI A, MAHANTI A, et al. Spatio- temporal and events based analysis of topic popularity in twitter[C]. Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, 2013: 219-228. doi: 10.1145/2505515.2505525.
    WANG S, YAN Z, HU X, et al. Burst time prediction in cascades[C]. 29th AAAI Conference on Artificial Intelligence, Austin, 2015: 325-331.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1385
  • HTML全文瀏覽量:  230
  • PDF下載量:  523
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-07-14
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-04-19

目錄

    /

    返回文章
    返回