一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于量子狼群進(jìn)化的多目標(biāo)匯聚節(jié)點(diǎn)覆蓋算法

金杉 金志剛

金杉, 金志剛. 基于量子狼群進(jìn)化的多目標(biāo)匯聚節(jié)點(diǎn)覆蓋算法[J]. 電子與信息學(xué)報, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
引用本文: 金杉, 金志剛. 基于量子狼群進(jìn)化的多目標(biāo)匯聚節(jié)點(diǎn)覆蓋算法[J]. 電子與信息學(xué)報, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
JIN Shan, JIN Zhigang. Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693
Citation: JIN Shan, JIN Zhigang. Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1178-1184. doi: 10.11999/JEIT160693

基于量子狼群進(jìn)化的多目標(biāo)匯聚節(jié)點(diǎn)覆蓋算法

doi: 10.11999/JEIT160693 cstr: 32379.14.JEIT160693
基金項(xiàng)目: 

國家自然科學(xué)基金(61571318),青海省科技項(xiàng)目(2015-ZJ-904),海南省科技項(xiàng)目(ZDYF2016153)

Multi-objective Sink Nodes Coverage Algorithm Based on Quantum Wolf Pack Evolution

Funds: 

The National Natural Science Foundation of China (61571318), The Qinghai Province Science and Technology Program (2015-ZJ-904), The Hainan Province Science and Technology Program (ZDYF2016153)

  • 摘要: 在構(gòu)建雙層無線傳感器網(wǎng)絡(luò)中,匯聚層覆蓋需要考慮無重復(fù)覆蓋面積、匯聚節(jié)點(diǎn)連通性和能耗平衡這3個關(guān)鍵問題。該文將上述3個問題統(tǒng)籌為多目標(biāo)優(yōu)化難題(MOP),提出一種面向匯聚節(jié)點(diǎn)覆蓋的量子狼群進(jìn)化算法(QWPEA),選擇出候選頭狼(CLW)群體,以滑模交叉、量子旋轉(zhuǎn)門、非門變異等方法產(chǎn)生尋優(yōu)高效的下一代量子編碼人工狼。仿真結(jié)果表明,該文所提算法能夠有效減少匯聚節(jié)點(diǎn)數(shù),提高匯聚層結(jié)構(gòu)穩(wěn)定性,并平衡網(wǎng)絡(luò)能耗,適于大范圍,大規(guī)模傳感器節(jié)點(diǎn)網(wǎng)絡(luò)部署環(huán)境。在800 m800 m面積部署傳感器節(jié)點(diǎn)達(dá)到1000個時,匯聚有效覆蓋率較MOPSO, NSGA-II算法分別高29.55%和25.93%,匯聚通信能耗率分別高15.27%和18.63%,匯聚占通率分別低14.01%和15.46%。
  • 羅旭, 柴利, 楊君. 異構(gòu)傳感器網(wǎng)絡(luò)多目標(biāo)多重覆蓋策略[J]. 電子與信息學(xué)報, 2014, 36(3): 690-695. doi: 10.3724/SP. J.1146.2013.00667.
    LUO Xu, CHAI Li, and YANG Jun. Multi-objective strategy of multiple coverage in heterogeneous sensor networks[J]. Journal of Electronics Information Technology, 2014, 36(3): 690-695. doi: 10.3724/SP.J.1146.2013.00667.
    ZHU Yanmin, XUE Cuiyao, CAI Haibin, et al. On deploying relays for connected indoor sensor networks[J]. Journal of Communications and Networks, 2014, 16(3): 335-343. doi: 10.1109/JCN.2014.000054.
    ARIVUDAINAMBI D, SREEKANTH G, and BALAJI S. Energy efficient sensor scheduling for target coverage in wireless sensor network[C]. International Conference on Wireless Communications, Networking and Applications (WCNA), Shenzhen, China, 2014: 693-705. doi: 10.1007/ 978-81-322-2580-5_62.
    TIAN Jingwen, GAO Meijuan, and GE Guangshuang. Wireless sensor network node optimal coverage based on improved genetic algorithm and binary ant colony algorithm [J]. Eurasip Journal on Wireless Communications and Networking, 2016, 2016(1): 1-11. doi: 10.1186/s13638-016- 0605-5.
    OZDEMIR S, ATTEA B A, and KHALIL O A. Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks[J]. Wireless Personal Communications, 2013, 71(1): 195-215. doi: 10.1007/s11277-012-0811-3.
    CHEN Zhi, LI Shuai, and YUE Wenjing. Memetic algorithm- based multi-objective coverage optimization for wireless sensor networks[J]. Sensors, 2014, 14(11): 20500-20518. doi: 10.3390/s141120500.
    李旭, 尹華銳, 衛(wèi)國. 區(qū)域覆蓋下的最優(yōu)中繼部署與功率分配[J]. 電子與信息學(xué)報, 2015, 37(10): 2446-2451. doi: 10.11999/ JEIT141444.
    LI Xu, YIN Huarui, and WEI Guo. Optimal relay deployment and power allocation for extending wireless coverage[J]. Journal of Electronics Information Technology, 2015, 37(10): 2446-2451. doi: 10.11999/JEIT141444.
    HE Yong, DENG Yun, and LUO Mingxing. The improved evolution paths to speedup quantum evolution[J]. International Journal of Theoretical Physics, 2016, 55(4): 1977-1987. doi: 10.1007/s10773-015-2838-1.
    吳虎勝, 張鳳鳴, 戰(zhàn)仁軍, 等. 利用改進(jìn)的二進(jìn)制狼群算法求解多維背包問題[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(5):
    WU Husheng, ZHANG Fengming, ZHAN Renjun, et al. Improved binary wolf pack algorithm for solving multidimensional knapsack problem[J]. Systems Engineering and Electronics, 2015, 37(5): 1084-1091. doi: 10.3969/ =j.issn. 1001-506X.2015.05.17.
    ZHAO Zhijin, PENG Zhen, ZHENG Shilian, et al. Cognitive radio spectrum allocation using evolutionary algorithms[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4421-4425. doi: 10.1109/TWC.2009.080939.
    COELLO C A C and LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. IEEE World Congress on Computational Intelligence (WCCI2002), Honolulu, USA, 2002: 1051-1056.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017.
    -1091. doi: 10.3969/j.issn.1001-506X.2015.05.17.
  • 加載中
計量
  • 文章訪問數(shù):  1253
  • HTML全文瀏覽量:  138
  • PDF下載量:  371
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-12-09
  • 刊出日期:  2017-05-19

目錄

    /

    返回文章
    返回