一種面向水面紋理的毫米波LFMCW雷達成像算法
doi: 10.11999/JEIT160684 cstr: 32379.14.JEIT160684
基金項目:
微波成像技術國家重點實驗室基金(CXJJ_15S119)
Imaging Algorithm of Millimeter-wave LFMCW Radar for Water Surface Texture Detection
Funds:
The Foundation of National Key Laboratory of Science and Technology on Microwave Imaging (CXJJ_15S119)
-
摘要: 利用毫米波線性調(diào)頻連續(xù)波(LFMCW)雷達探測水面時,靜止目標的回波以及噪聲通常會淹沒水面本身的回波信號,導致采用傳統(tǒng)成像算法得到的結(jié)果中難以看到水面波浪紋理。針對這一問題,該文提出一種面向水面紋理的毫米波LFMCW雷達成像算法,該算法在距離向上采用Dechirp技術進行距離壓縮,在方位向上進行分塊處理。方位向分塊處理過程中,首先根據(jù)靜止目標與運動目標回波多普勒頻率不同的特性,在頻域去除靜止目標回波的干擾;然后基于水面電磁散射特性,采用最大似然估計方法估計方位向頻譜參數(shù),計算水面回波能量。采用該算法對實測數(shù)據(jù)進行處理,結(jié)果顯示該算法能夠獲得水面紋理信息,成像結(jié)果優(yōu)于傳統(tǒng)成像算法。
-
關鍵詞:
- 毫米波LFMCW雷達 /
- 水面紋理 /
- 最大似然估計
Abstract: In the application of millimeter-wave Linear Frequency Modulated Continuous Wave (LFMCW) radar for water surface detection, the echo of water surface itself is always covered by the echo of stationary targets and noises, leading to the result that water surface texture can hardly be seen in the figures obtained by the conventional imaging algorithm. To solve this problem, an imaging algorithm of millimeter-wave LFMCW radar for water surface texture is proposed, the Dechirp technique is adopted to complete the range compression in range direction, and the data is divided into blocks to be dealt with separately in azimuth direction. During the processing in azimuth direction, interference from static targets is removed in frequency domain according to the fact that stationary targets and moving targets have different Doppler frequencies; then, based on the electromagnetic scattering characteristic of water surface, a maximum likelihood estimation method is used to estimate azimuth spectrum parameters to calculate the energy of water surface echo. The proposed algorithm is used to process measured data, and the results show that water surface texture can be obtained, which means that the proposed algorithm is superior to the traditional one. -
MEHDI G and MIAO Jungang. Millimeter wave FMCW radar for foreign object debris (FOD) detection at airport runways[C]. International Bhurban Conference on Applied Sciences Technology (IBCAST), Islamabad, Pakistan, 2012: 407-412. doi: 10.1109/IBCAST.2012.6177589. FERRI M, GIUNTA G, BANELLI A, et al. Millimeter wave radar applications to airport surface movement control and foreign object detection[C]. European Radar Conference, Rome, Italy, 2009: 437-440. MAZOUNI K, KOHMURA A, FUTATSUMORI S, et al. 77GHz FM-CW radar for FODs detection [C]. European Radar Conference, Paris, France, 2010: 451-454. NSENGIYUMVA F, PICHOT C, ALIFERIS I, et al. Millimeter-wave imaging of foreign object debris (FOD) based on two-dimensional approach[C]. IEEE Conference on Antenna Measurements Applications (CAMA), Chiang Mai, Thailand, 2015. doi: 10.1109/CAMA.2015.7428122. ZHONG Qi, ZHANG Zhongjin, YAN Danqing, et al. Airport runway FOD detection based on LFMCW radar using interpolated FFT and CLEAN[C]. IEEE 12th International Conference on Computer and Information Technology, Chengdu, China, 2012: 747-750. doi: 10.1109/CIT.2012.160. FEIL P, MENZEL W, NGUYEN T P, et al. Foreign objects debris detection (FOD) on airport runways using a broadband 78 GHz sensor[C]. European Radar Conference, Amsterdam, Netherlands, 2008: 451-454. doi: 10.1109/ EUMC.2008.4751779. LEONARD T, LAMONT S T, HODGES R, et al. 94 GHz TARSIER radar measurements of wind waves and small targets[C]. European Radar Conference, Manchester, UK, 2011: 73-76. CAPUTI W J. Stretch: A time-transformation technique [J]. IEEE Transactions on Aerospace and Electronic System, 1971, 7(2): 269-278. doi: 10.1109/TAES.1971.310366. CROMBIE D D. Doppler spectrum of sea echo at 13.56Mc/s [J]. Nature, 1955, 175(4459): 681-682. doi: 10.1049/cp.2012. 1727. HUANG Weimin and GILL E. Measuring surface wind direction by mono-static HF Ground-Wave radar at the eastern China sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1032-1037. doi: 10.1109/JOE.2004.834175. HUANG Weimin and GILL E. HF radar wave and wind measurement over the eastern China sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 1950-1955. doi: 10.1109/TGRS.2002.803718. BRUNING C, ALPER W R, and SCHROTER J G. On the focusing issue of synthetic aperture radar imaging of ocean waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(1): 120-128. doi: 10.1109/36.101378. OUCHI K. Synthetic aperture radar imagery of range traveling ocean waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 30-37. doi: 10.1109/36. 2997. GOODMAN J W. Statistical Properties of Laser Speckle Patterns[M]. Laser Speckle and Related Phenomena, New York, USA, Springer, 1975: 9-75. OLIVER C and QUEGAN S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC, SciTech Publishing, USA, 2004: 49-100. CHITROUB S, HOUACINE A, and SANSAL B. Statistical characterisation and modelling of SAR images[J]. Signal Processing, 2002, 82(1): 69-92. -
計量
- 文章訪問數(shù): 1755
- HTML全文瀏覽量: 180
- PDF下載量: 364
- 被引次數(shù): 0