鐵質(zhì)長旋轉(zhuǎn)橢球殼體在均勻恒定磁場中產(chǎn)生的感應場
doi: 10.11999/JEIT160683 cstr: 32379.14.JEIT160683
-
1.
(西安電子科技大學理學院 西安 710071) ②(中國電波傳播研究所電波環(huán)境特性及?;夹g(shù)重點實驗室 青島 266107)
國家863計劃項目(2015SQ712378, 2015SQ 712220),中國電子科技集團公司重點實驗室專項基金(A171501023)
Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field
-
1.
(School of Science, Xidian University, Xi&rsquo
-
2.
(National Key Laboratory of Electromagnetic Environment, Research Institute of Radio Wave Propagation, Qingdao 266107, China)
The National 863 Program of China (2015SQ712378, (2015SQ712220), China Electronics Technology Group Corporation National Key Laboratory Special Fund (A171501023)
-
摘要: 為了研究潛艇周圍的感應場,該文將潛艇的形狀理想化為一個旋轉(zhuǎn)對稱的長橢球殼體。該文導出了殼體內(nèi)外的感應磁場表達式,采用解析方法分析討論在外加均勻恒定磁場下,殼體上產(chǎn)生的總感應磁場以及各分量在不同緯度、不同放置方向和不同探測高度上的等值線分布。計算結(jié)果表明:隨著傳播距離的增加,感應磁場逐漸變?nèi)酢Q貧んw縱軸方向(z分量)的感應磁場最顯著,而沿垂直方向(x分量)的感應磁場最小。與高緯度相比,中緯度總感應磁場和各分量更容易被磁力計探測到。隨著高度的增加,它們的探測范圍變化不大。殼體沿南北方向放置時更容易被探測到。Abstract: The shape of the submarine is idealized as a rotation symmetrical long ellipsoid cavity in order to study the induced fields around the submarine. The expressions of the induced magnetic fields in inside and outside cavity are derived. The contour distributions of the total induced magnetic field and each component on the cavity along different latitudes, different location directions and different detection heights are analyzed and discussed by the analytical method under the uniform constant magnetic field. The calculation results indicate that the induced magnetic fields will gradually die down along with the increase of the propagation distance. The induced magnetic field is prominent along the cavity longitudinal direction (z component), while it is minimum along the cavity vertical direction (x component). The total induced magnetic field and each component detected by the magnetometer at middle latitude can be more easily detected than those at high latitude. While their detection ranges change very little along with the increase of the height. It can be more easily detected when the cavity is placed along the south and north direction.
-
Key words:
- Induced magnetic field /
- Submarine /
- Magnetometer /
- Detection range
-
陳宇沁, 周宏威, 袁建生. 基于磁異常檢測的潛艇探測探頭類型分析[J]. 電測與儀表, 2015, 52(11): 20-24. doi: 10.3969/ j.issn.1001-1390.2015.11.005. CHEN Yuqin, ZHOU Hongwei, and YUAN Jiansheng. Analysis of different types of magnetic probes for submarine detection based on magnetic anomaly[J]. Electrical Measurement Instrumentation, 2015, 52(11): 20-24. doi: 10.3969/j.issn.1001-1390.2015.11.005. HAO Liling, LI Gang, and LIN Ling. Optimization of measurement arrangements for magnetic detection electrical impedance tomography[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(2): 444-452. doi: 10.1109/ TBME.2013.2280632. 陳正想, 盧俊杰. 弱磁探測技術(shù)發(fā)展現(xiàn)狀[J]. 水雷戰(zhàn)與艦船防護, 2011, 19(4): 1-5. CHEN Zhengxiang and LU Junjie. Current development of weak magnetic detection[J]. Mine Warfare Ship Self-Defence, 2011, 19(4): 1-5. 崔國恒, 于德新. 非聲探潛技術(shù)現(xiàn)狀及其對抗措施[J]. 火力與指揮控制, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640. 2007.12.003. CUI Guoheng and YU Dexin. Status quo of non-acoustics antisubmarine detecting technology and its countermeasures[J]. Fire Control and Command Control, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640.2007. 12.003. 艾艷輝, 趙治平. 非聲探測技術(shù)面面觀[J]. 水雷戰(zhàn)與艦船防護, 2003(3): 43-46. AI Yanhui and ZHAO Zhiping. Outlook of non-acoustics submarine detection[J]. Mine Warfare Ship Self-Defence, 2003(3): 43-46. 吳奕初, 胡占成, 劉海林, 等. 光磁共振實驗測量地磁場方法的探究[J]. 物理實驗, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016. 04.001. WU Yichu, HU Zhancheng, LIU Hailin, et al. Measuring the geomagnetic field using optical magnetic resonance[J]. Physics Experimentation, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016.04.001. 馮亞敏, 陳聰, 馮漢臣. 潛艇腐蝕相關(guān)靜態(tài)電磁場分布規(guī)律的實驗驗證[J]. 武漢理工大學學報(交通科學與工程版), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029. FENG Yamin, CHEN Cong, and FENG Hanchen. Experimental verification of the distribution regularities of the static corrosion-related-electromagnetic field produced by a submarine[J]. Journal of Wuhan University of Technology (Transportation Science Engineering), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029. 衣軍, 張朝陽, 虞偉喬. 基于地磁模擬的潛艇感應磁場測量[J]. 上海海事大學學報, 2015, 36(1): 61-64. YI Jun, ZHANG Chaoyang, and YU Weiqiao. Measurement of submarines induced magnetic field based on geomagnetic simulation[J]. Journal of Shanghai Maritime University, 2015, 36(1): 61-64. BRUNOTTE X, MEUNIER G, and BONGIRAUD J. Ship magnetizations modelling by the finite element method[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1970-1975. doi: 10.1109/20.250795. NGUYEN T S, GUICHON J M, CHADEBEC O, et al. Ships magnetic anomaly computation with integral equation and fast multipole method[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1414-1417. doi: 10.1109/TMAG.2010.2091626. TANRISEVEN S, CAN H, TOPAL U, et al. A low cost and simple fluxgate magnetometer implementation[C]. International Conference on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design, Canada, 2015: 7-9. 林鋼, 楊會平, 白彥崢, 等. 高精度空間磁通門磁力計[J]. 華中科技大學學報(自然科學版), 2005, 33(12): 61-63. doi: 10.3321/j.issn.1671-4512.2005.12.019. LIN Gang, YANG Huiping, BAI Yanzheng, et al. Space fluxgate magnetometer with high precision[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2005, 33(12): 61-63. doi: 10.3321/ j.issn.1671-4512.2005.12.019. WANG Jiabo and CHEN Xi. A fluxgate magnetometer for navigation and sensing: noise character and digital filtering[C]. Sensors, IEEE, Canada, 2015: 1-4. doi: 10.1109/ICSENS.2015.7370466. 張敏, 楊福喜, 張文來, 等. 磁通門磁力儀探頭定向角度與準確度標定分析[J]. 地震地磁觀測與研究, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015.05.017. ZHANG Min, YANG Fuxi, ZHANG Wenlai, et al. Preliminary analysis of directional angle and measurement accuracy on the fluxgate magnetometer probe[J]. Seismological and Geomagnetic Observation and Research, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015. 05.017. ROBBES D. Highly sensitive magnetometers-a review[J]. Sensors and Actuators A-Physical, 2006, 129(1): 86-93. doi: 10.1016/j.sna 2005.11.023. 潘威炎. 長波超長波極長波傳播[M]. 成都:電子科技大學出版社, 2004: 40-101. PAN Weiyan. Long Wave Beyond Long Wave Extremely Long Wave Propagation[M]. Chengdu: Electric Science and Technology University Press, 2004: 40-101. MOON P and SPENCER D E. Field Theory Handbook[M]. Berlin: Springer-Verlag, 1961: 28-30. WANG Yuanxin, ZHAO Zhenwei, WU Zhensen, et al. Fast convergence algorithm for earthquake prediction using electromagnetic fields excited by SLF/ELF horizontal magnetic dipole and Schumann resonance[J]. Wireless Personal Communication, 2014, 77(2): 1039-1053. doi: 10.1007/sl1277-013-1553-6. WANG Yuanxin, JIN Ronghong, GENG Junping, et al. Exact SLF/ELF underground HED field strengths in earth-ionosphere cavity and Schumann resonance[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 3031-3039. doi: 10.1109/TAP.2011.2158952. -
計量
- 文章訪問數(shù): 1103
- HTML全文瀏覽量: 113
- PDF下載量: 301
- 被引次數(shù): 0