Alpha穩(wěn)態(tài)噪聲下基于Meridian范數(shù)的全變分圖像去噪算法
doi: 10.11999/JEIT160657 cstr: 32379.14.JEIT160657
-
2.
(南京郵電大學(xué)視覺(jué)認(rèn)知計(jì)算與應(yīng)用研究中心 南京 210023) ②(南京郵電大學(xué)寬帶無(wú)線(xiàn)通信與傳感網(wǎng)技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 南京 210003)
國(guó)家自然科學(xué)基金(61501251, 61271335, 61271240),江蘇省自然科學(xué)基金項(xiàng)目(BK20140891),南京郵電大學(xué)引進(jìn)人才科研啟動(dòng)基金資助項(xiàng)目(NY214191)
A Total Variational Approach Based on Meridian Norm for Restoring Noisy Images with Alpha-stable Noise
-
2.
(Center for Visual Cognitive Computation and Application, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
The National Natural Science Foundation of China (61501251, 61271335, 61271240), The Natural Science Foundation of Jiangsu Province (BK20140891), The Science Foundation of Nanjing University of Posts and Telecommunications (NY214191)
-
摘要: 在實(shí)際應(yīng)用中,噪聲不可避免,因此,圖像去噪一直是圖像處理領(lǐng)域研究的重點(diǎn),并且近年來(lái)受到越來(lái)越多的研究者的青睞。該文首先基于Meridian分布和全變分(Total Variational, TV)的統(tǒng)計(jì)特性,提出一種全變分模型來(lái)復(fù)原alpha穩(wěn)態(tài)噪聲環(huán)境下的含噪聲圖像。此外,為了保證模型解的唯一性,對(duì)提出的全變分模型添加了一個(gè)二次懲罰項(xiàng),得到一個(gè)嚴(yán)格凸的全變分模型,然后,使用原始-對(duì)偶算法對(duì)提出的全變分模型進(jìn)行求解,并證明了該算法的收斂性。最后,進(jìn)行了仿真實(shí)驗(yàn),并對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了分析,實(shí)驗(yàn)結(jié)果驗(yàn)證了提出模型的可行性與有效性。
-
關(guān)鍵詞:
- 圖像處理 /
- Meridian范數(shù) /
- Alpha穩(wěn)態(tài)噪聲 /
- 原始-對(duì)偶算法 /
- 全變分
Abstract: In actual applications, noises may inevitably exist, and thus to study the denoising method for images is great significant task in image processing filed that attracts much attention in recent years. In this paper, based on the statistical property of Meridian distributed and the Total Variational (TV), a total variational method is proposed for restoring images degraded by alpha-stable noise. Besides, in order to obtain a strictly convex model, a quadratic penalty term is added, which guarantees the uniqueness of the solution. For solving the novel convex variational model, a primal-dual algorithm is employed to solve the above model, and the convergence of the algorithm is proved. The experimental results demonstrate that the feasibility and effectiveness of the proposed model for the noisy images with alpha-stable noise.-
Key words:
- Image processing /
- Meridian norm /
- Alpha-stable noise /
- Primal-dual algorithm /
- Total Variational (TV)
-
CHANG S G, YU B, and VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546. doi: 10.1109/83. 862633. RAFAEL C G and RICHARD E W. Digital Image Processing[M]. 2nd Edition, Upper Saddle River, USA, Prentice Hall, 2002: 220-275. NODES T and GALLAGHER N Jr. Median filter: Some modifications and their properties[J]. IEEE Transactions on Acoustics, Speech and Signal, Processing, 1982, 30(5): 739-746. doi: 10.1109/TASSP.1982.1163951. BARBU T, BARBU V, BIGA V, et al. A PDE variational approach to image denoising and restoration[J]. Nonlinear Analysis: Real World Applications, 2009, 10(3): 1351-1361. RUDIN L, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259-268. doi: 10.1016/ 0167-2789(92)90242-F. CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97. doi: 10.1023/B:JMIV. 0000011325.36760.1e. CHAN R, DONG Y, and HINTERMULLER M. An efficient two-phase L1-TV method for restoring blurred images with impulse noise[J]. IEEE Transactions on Image Processing, 2010, 19(7): 1731-1739. doi: 10.1109/TIP.2010.2045148. YANG J, ZHANG Y, and YIN W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J]. SIAM Journal on Scientific Computing, 2009, 31(4): 2842-2865. doi: 10.1137/080732894. 金正猛, 楊燕. 基于框式約束的快速全變差圖像泊松去噪算法[J]. 電子與信息學(xué)報(bào), 2014, 36(8): 1866-1871. doi: 10.3724 /SP.J.1146.2014.00154. JIN Zhengmeng and YANG Yan. A fast total variation algorithm based on box constraint for Possion noise removal [J]. Journal of Electronics Information Technology, 2014, 36(8): 1866-1871. doi: 10.3724/SP.J.1146.2014.00154. SCIACCHITANO F, DONG Y, and ZENG T. Variational approach for restoring blurred images with Cauchy noise[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1894-1922. doi: 10.1137/140997816. AUBERT G and AUJOL J. A variational approach to removing multiplicative noise[J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946. doi: 10.1137/060671814. DONG Y and ZENG T. A convex variational model for restoring blurred images with multiplicative noise[J]. SIAM Journal on Imaging Sciences, 2013, 6(3): 1598-1625. doi: 10.1137/120870621. CHEN L and ZENG T. A convex variational model for restoring blurred images with large Rician noise[J]. Journal of Mathematical Imaging and Vision, 2015, 53(1): 92-111. doi: 10.1007/s10851-014-0551-y. NOLAN J. Stable Distributions-Models for Heavy Tailed Data[M]. Birkhauser Boston, 2015: 3-24. ZOZOR S, BROSSIER J, and AMBLARD P O. A parametric approach to suboptimal signal detection in alpha-stable noise[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4497-4509. doi: 10.1109/TSP.2006. 882066. SADREAZAMI H, AHMAD M O, and SWAMY M N S. Contourlet domain image denoising using the alpha-stable distribution[C]. IEEE 57th International Midwest Symposium on Circuits and Systems, College Station, Texas, USA, 2014: 141-144. doi: 10.1109/MWSCAS.2014.6908372. AYSAL T C and BARNER K E. Meridian filtering for robust signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 3949-3962. doi: 10.1109/TSP.2007.894383. KORNPROBST P, DERICHE R, and AUBERT G. Image sequence analysis via partial differential equations[J]. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26. doi: 10.1023/A:1008318126505. CHAMBOLLE A and POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120-145. doi: 10.1007/s10851-010-0251-1. WEI K, TAI X, CHAN T, et al. Primal-dual method for continuous max-flow approaches[C]. Proceedings of 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing, UK, 2016: 17-24. doi: 10.1201/ b19241-5. CARRILLO R E, BARNER K E, and AYSAL T C. Robust sampling and reconstruction methods for sparse signal in the presence of impulsive noise[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 392-408. doi: 10.1109 /JSTSP.2009.2039177. ZHOU W, BOVIK A, SHEIKH H, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1510
- HTML全文瀏覽量: 222
- PDF下載量: 384
- 被引次數(shù): 0