基于模糊語義的高分辨率SAR圖像汽車檢測算法
doi: 10.11999/JEIT160650 cstr: 32379.14.JEIT160650
基金項目:
國家973計劃項目(2013CB329402),國家自然科學(xué)基金(61573267),國家自然科學(xué)基金重大研究計劃(91438201, 91438103)
Detecting Cars in VHR SAR Images with a Fuzzy Semantic Algorithm
Funds:
The National 973 Program of China (2013CB329402), The National Natural Science Foundation of China (61573267), The Major Research Plan of the National Natural Science Foundation of China (91438201, 91438103)
-
摘要: 針對高分辨率SAR圖像難于找到精確的背景雜波分布概率模型的問題,該文提出一種不需要背景雜波分布概率模型的高分辨率SAR圖像自動檢測汽車的新方法。該算法首先搜索場景中包含的亮區(qū)域和暗區(qū)域,其次采用模糊隸屬度函數(shù)提取語義特征,篩選可能是汽車強散射區(qū)域的亮區(qū)域和可能是汽車遮擋區(qū)域的暗區(qū)域。再根據(jù)空間語義關(guān)系,對候選汽車強散射區(qū)域與候選汽車遮擋區(qū)域進行匹配,若匹配成功則計算它們源于同一輛汽車的隸屬度。最后閾值選擇高隸屬度的目標(biāo)進行合并輸出。通過對MiniSAR圖像進行汽車檢測實驗,表明該方法在不需要背景雜波分布概率模型的條件下仍然具有較高的檢測率。
-
關(guān)鍵詞:
- 高分辨率SAR /
- 圖像處理 /
- 目標(biāo)檢測 /
- 圖像語義 /
- 模糊隸屬度
Abstract: It is hard to select a probability distribution model for very high resolution SAR images. This paper presents a novel method for the automatic detecting of cars from VHR SAR image without the probability distribution model. The proposed method starts with searching bright regions and dark regions by the gray feature. Subsequently, the fuzzy membership is employed to extract the semantic features of car from bright regions and dark regions. The potential scattering surface and shadow are matched and calculated with the spatial semantic relationship. Finally, the cars are selected from the matching. The efficiency of the proposed method is demonstrated by experiment which shows it still has high detection rate without the probability distribution model. -
EL-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the- art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598. ZHANG Yangrui, GAO Meiguo, and LI Yunjie. Performance analysis of typical mean-level CFAR detectors in the interfering target background[C]. IEEE 9th Conference on (Industrial Electronics and Applications) ICIEA, Hangzhou, 2014: 1045-1048. YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel- based CFAR target detection for high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 730-734. doi: 10.1109/LGRS.2016.2540809. HUANG Yong and LIU Fang. Detecting cars in VHR SAR images via semantic CFAR algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 801-805. doi: 10. 1109/LGRS.2016.2546309. HOU Biao, CHENG Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 811-815. 宋文青, 王英華, 劉宏偉. 高分辨SAR圖像自動區(qū)域篩選目標(biāo)檢測算法[J]. 電子與信息學(xué)報, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808. SONG Wenqing, WANG Yinghua, and LIU Hongwei. An automatic block-to-block censoring target detector for high resolution SAR image[J]. Journal of Electronics Information Technology, 2016, 38(5): 1017-1025. doi: 10.11999/JEIT150808. DOERRY A W and DUBBERT D F. Digital signal processing applications in high-performance synthetic aperture radar processing[C]. Signals, Systems and Computers, Monterey, USA, 2004: 947-949. BRENER A R. Proof of concept for airborne SAR imaging with 5 cm resolution in the X-band[C]. European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 615-618. 王巖飛, 劉暢, 李和平, 等. 基于多通道合成的優(yōu)于0.1 m分辨率的機載SAR系統(tǒng)[J]. 電子與信息學(xué)報, 2013, 35(1): 29-35. doi: 10.3724/SP. J.1146.2011.01370. WANG Yanfei, LIU Chang, and LI Heping, et al. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics Information Technology, 2013, 35(1): 29-35. doi: 10.3724/SP.J.1146.2011. 01370. CHABBI S, LAROUSSI T, and BARKAT M. Performance analysis of dual automatic censoring and detection in heterogeneous Weibull clutter: A comparison through extensive simulations[J]. Signal Processing, 2013, 99(11): 2879-2893. doi: j.sigpro.2013.03.026. GAO Gui, LIU Li, and ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697. doi: 10.1109/TGRS. 2008.2006504. ANANTHI V P, BALASUBRAMANIAM P, and LIM C P. Segmentation of gray scale image based on intuitionistic fuzzy sets constructed from several membership functions[J]. Pattern Recognition, 2014, 47(12): 3870-3880. KRINIDIS S and CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1336. WANG Min and SONG Tengyi. Remote sensing image retrieval by scene semantic matching[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2874-2886. FERRO A, BRUNNER D, and BRUZZONE L. Automatic detection and reconstruction of building radar footprints from single VHR SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 935-952. JIAO Licheng, TANG X, HOU B, et al. SAR images retrieval based on semantic classification and region-based similarity measure for earth observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3876-3891. WANG H F and SUN Z X. The methods of semantics processing in content-based image retrieval[J]. Journal of Image Graph, 2001, 6(10): 945-952. LIU Fang, DUAN Yiping, LI Lingling, et al. SAR image segmenation based on hierarhical visual semantic and adaptive neighborhood multinomial latent model[J]. IEEE Trancactions on Geoscience and Remote Sensing, 2016, 54(7): 4287-4301. WU N and SONG F M. An image retrieval method based on high-level image semantic information[J]. Journal of Image Graph, 2006, 11(12): 1774-1780. LIAO Pingsung, CHEN Tsesheng, and CHUNG Pauchoo. A fast algorithm for multilevel thresholding[J]. Journal of Information Science and Engineering, 2001, 17(5): 713-727. -
計量
- 文章訪問數(shù): 1467
- HTML全文瀏覽量: 133
- PDF下載量: 346
- 被引次數(shù): 0