基于子圖同構的vEPC虛擬網(wǎng)絡分層協(xié)同映射算法
doi: 10.11999/JEIT160642 cstr: 32379.14.JEIT160642
基金項目:
國家863計劃(2014AA01A701),國家自然科學基金(61521003),科技部支撐計劃(2014BAH30B01)
Hierarchical Coordination Strategy for vEPC Virtual Network Embedding Based on Subgraph Isomorphism
Funds:
The National 863 Program of China (2014AA01A701), The National Natural Science Foundation of China (61521003), The Ministry of Science and Technology Support Plan (2014BAH30B01)
-
摘要: 5G及未來移動通信網(wǎng)絡虛擬化的場景下,資源的管理與編排是實現(xiàn)虛擬化演進分組核心網(wǎng)(vEPC)業(yè)務高效部署的關鍵問題。vEPC中業(yè)務功能的載體是服務功能鏈(SFC),不同服務功能鏈的控制信令與多媒體數(shù)據(jù)流呈現(xiàn)負載差異化特點。該文針對傳統(tǒng)算法資源定比分配所導致的負載不均問題,提出服務功能鏈的控制層和轉(zhuǎn)發(fā)層解耦的映射模型,解耦后不同層的服務鏈可以獨立地擴容和縮容,實現(xiàn)資源精準按需切片。拓撲映射階段引入圖相似理論,提出一種基于子圖同構的虛擬網(wǎng)絡映射算法VF2-H,依據(jù)節(jié)點的全局資源度優(yōu)選映射子網(wǎng),通過圖特征分析設置剪枝條件,采用回溯機制進行啟發(fā)式搜索。仿真結果表明,該算法在租戶請求接收率、長期收益開銷比等方面均具有良好的性能。
-
關鍵詞:
- 網(wǎng)絡虛擬化 /
- 5G /
- 虛擬化演進分組核心網(wǎng) /
- 虛擬網(wǎng)絡映射 /
- 子圖同構
Abstract: In 5G and the future mobile communication network, resource management and scheduling are the key issues to achieve efficient service deployment of virtual Evolved Packet Core (vEPC) nerwork. Service deployment in vEPC is based on Service Function Chain (SFC), in which signaling streams and forwarding streams have a big difference. On account of traffic differentiation of mobile network, the proposed model decouples the control layer and transfer layer of SFC. Different layers can make expansion and contraction independently to achieve accurate resources on-demand slice. Utilizing graph similarity theory, a virtual network embedding strategy called VF2-H is put forward in accordance with subgraph isomorphism. Firstly, candidate substrate subnet is preliminary selected on the basis of global resources capacity. Secondly, pruning condition is formulated based on the graph characteristics. Finally, collaborative search strategy is designed according to the characters of vEPC mapping. The simulation results validate the performance of the proposed algorithm in request accepting rate and long-term revenue-to-cost rate. -
OSSEIRAN A, BOCCARDI F, BRAUN V, et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project[J]. IEEE Communications Magazine, 2014, 52(5): 26-35. doi: 10.1109/MCOM.2014.6815890. BARBAROSSA S, SARDELLITTI S, and DI LORENZO P. Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6): 45-55. doi: 10.1109/MSP. 2014.2334709. HSU W H and SHIEH Y P. Virtual network mapping algorithm in the cloud infrastructure[J]. Journal of Network and Computer Applications, 2013, 36(6): 1724-1734. doi: 10.1016/J.JNCA.2013.02.028. FANG W, ZENG M, LIU X, et al. Joint spectrum and IT resource allocation for efficient VNF service chaining in inter-datacenter elastic optical networks[J]. IEEE Communications Letters, 2016, 20(8): 1539-1542. doi: 10. 1109/LCOMM.2016.2580151. YE Z, CAO X, WANG J, et al. Joint topology design and mapping of service function chains for efficient, scalable, and reliable network functions virtualization[J]. IEEE Network, 2016, 30(3): 81-87. doi: 10.1109/MNET.2016.7474348. YOUSAF F Z and TALEB T. Fine-grained resource-aware virtual network function management for 5G carrier cloud[J]. IEEE Network, 2016, 30(2): 110-115. doi: 10.1109/MNET. 2016.7437032. GARG S, DWIVEDI R K, and CHAUHAN H. Efficient utilization of virtual machines in cloud computing using synchronized throttled load balancing[C]. IEEE Next Generation Computing Technologies, Dehradun, India, 2015: 77-80. doi: 10.1109/IADCC.2015.7154687. BAUMGARTNER A, REDDY V S, and BAUSCHERT T. Mobile core network virtualization: A model for combined virtual core network function placement and topology optimization[C]. IEEE Conference on Network Softwarization, London, United Kingdom, 2015: 1-9. doi: 10.1109/NETSOFT.2015.7116162. LISCHKA J and KARL H. A virtual network mapping algorithm based on subgraph isomorphism detection[C]. ACM Workshop on Virtualized Infrastructure Systems and Architectures, Beijing, China, 2009: 81-88. doi: 10.1145/ 1592648.1592662. FAN Z, CHOI B, XU J, et al. Asymmetric structure- preserving subgraph queries for large graphs[C]. IEEE 31st International Conference on Data Engineering, Seoul, Korea, 2015: 339-350. doi: 10.1109/ICDE.2015. 7113296. ROSA R V, ESTEVE ROTHENBERG C, and MADEIRA E. Virtual data center networks embedding through software defined networking[C]. IEEE Network Operations and Management Symposium, Krakow, Poland, 2014: 1-5. doi: 10.1109/NOMS.2014.6838352. GONZALEZ A, BARRA E, BEGHELLI A, et al. A sub-graph mapping-based algorithm for virtual network allocation over flexible grid networks[C]. IEEE Transparent Optical Networks, Budapest, Hungary, 2015: 1-4. doi: 10. 1109/ICTON.2015.7193484. CAO Y, FAN W, and MA S. Virtual Network Mapping: A Graph Pattern Matching Approach[M]. Berlin, Germany, Springer International Publishing, 2015: 49-61. doi: 10.1007/ 978-3-319-20424-6_6. HOSSAIN E and HASAN M. 5G cellular: Key enabling technologies and research challenges[J]. IEEE Instrumentation Measurement Magazine, 2015, 18(3): 11-21. doi: 10.1109/MIM.2015.7108393. GONG L, WEN Y, ZHU Z, et al. Toward profit-seeking virtual network embedding algorithm via global resource capacity[C]. IEEE International Conference on Computer Communications, Toronto, Canada, 2014: 1-9. doi: 10.1109/ INFOCOM.2014.6847918. -
計量
- 文章訪問數(shù): 1274
- HTML全文瀏覽量: 115
- PDF下載量: 339
- 被引次數(shù): 0