能量受限無(wú)線云的動(dòng)態(tài)調(diào)度和動(dòng)態(tài)定價(jià)算法
doi: 10.11999/JEIT160590 cstr: 32379.14.JEIT160590
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271235),江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目
Energy-constrained Dynamic Scheduling and Dynamic Pricing Algorithm in Wireless Cloud Computing
Funds:
The National Natural Science Foundation of China (61271235), The Priority Academic Program Development of Jiangsu Higher Education Institutions
-
摘要: 該文在無(wú)線云條件下提出一種能量受限的聯(lián)合動(dòng)態(tài)調(diào)度和動(dòng)態(tài)定價(jià)算法。構(gòu)造了包括能量限制和流量限制的李雅普諾夫函數(shù),把多個(gè)約束條件下的長(zhǎng)期利潤(rùn)優(yōu)化問(wèn)題轉(zhuǎn)化為最小化李雅普諾夫偏移和罰函數(shù)加權(quán),保證了電力公司對(duì)云服務(wù)運(yùn)營(yíng)商的有限能量要求以及云用戶對(duì)業(yè)務(wù)流量的要求,并且使云服務(wù)運(yùn)營(yíng)商的長(zhǎng)期利潤(rùn)得到優(yōu)化。
-
關(guān)鍵詞:
- 無(wú)線云計(jì)算 /
- 能量受限 /
- 動(dòng)態(tài)調(diào)度 /
- 李雅普諾夫優(yōu)化
Abstract: A novel energy-constrained joint dynamic scheduling and pricing algorithm in wireless cloud computing system is proposed. A Lyapunov function of energy constraints and traffic restrictions is constructed. The long-term profit optimization problem?with multiple?constraints is turned into minimizing the upper bound of Lyapunov offset and weighted penalty function. The algorithm ensures the limited energy requirements of cloud service providers as well as the traffic demands of cloud users, furthermore, it optimizes the long-term profit of cloud service providers. -
KALAGIAKOS P and KARAMPELAS P. Cloud computing learning[C]. International Conference on Application of information and Communication Technologies (AICT), Baku, 2011: 1-4. doi: 10.1109/ICAICT.2011.6110925. BORU D, KLIAZOVICH D, GRANELLI F, et al. Models for efficient data replication in cloud computing datacenters[C]. IEEE International Conference on Communications, London, 2015: 6056-6061. doi: 10.1109/ICC.2015.7249287. REN C, WANG D, URGAONKAR B, et al. Carbon- awareenergy capacity planning for datacenters[C]. The 20th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Washington, D.C., 2012: 391-400. GOYAL Y, ARYA M S, and NAGPAL S. Energy efficient hybrid policy in green cloud computing[C]. International Conference on Green Computing and Internet of Things, Noida, 2015: 1065-1069. doi: 10.1109/ICGCIoT.2015. 7380621. YOU C, HUANG K, and CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1757-1771. doi: 10.1109/JSAC.2016.2545382. EROL-KANTARCI M and MOUFTAH H T. Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues[J]. IEEE Communications Surveys Tutorials, 2015, 17(1): 179-197. doi: 10.1109/COMST.2014.2341600. ISA N B M, WEI T C, and YATIM A H M. Smart grid technology: Communications, power electronics and control system[C]. International Conference on Sustainable Energy Engineering and Application, Bandung, 2015: 10-14. doi: 10.1109/ICSEEA.2015.7380737. GUENTER B, JAIN N, and WILLIAMS C. Managing cost, performance, and reliability tradeoffs for energy-aware server provisioning[C]. IEEE International Conference on Computer Communications, Shanghai, 2011: 1332-1340. doi: 10.1109/ INFCOM.2011.5934917. REN S, HE Y, and XU F. Provably-efficient job scheduling for energy and fairness in geographically distributed data centers[C]. The 32nd IEEE International Conference on Distributed Computing Systems (ICDCS), Macau, China, 2012: 22-31. doi: 10.1109/ICDCS.2012.77. LIN M, WIERMAN A, ANDREW L L H, et al. Dynamic right-sizing for power-proportional data centers[J]. IEEE/ ACM Transactions on Networking, 2013, 21(5): 1378-1391. JOE-WONG C, SEN S, HA S, et al. Optimized day-ahead pricing for smart grids with device-specific scheduling flexibility[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(6): 1075-1085. REN S and VAN M. Dynamic scheduling and pricing in wireless cloud computing[J]. IEEE Transactions on Mobile Computing, 2014, 13(10): 2283-2292. doi: 10.1109/TMC. 2013.57. POLVERINI M, REN S, and CIANFRANI A. Capacity provisioning and pricing for cloud computing with energy capping[C]. The 51st Annual Allerton Conference on Communication, Control, and Computing, Monticello, 2013: 413-420. doi: 10.1109/Allerton.2013.6736554. NEELY M J. Stochastic Network Optimization with Application to Communication and Queuing Systems[M]. Berkeley: Morgan Claypool, 2010: 211. ZHANG Y, WANG Y, and WANG X. Electricity bill capping for cloud-scale datacenters that impact the power markets[C]. The 41st International Conference on Parallel Processing, Pittsburgh, PA, 2012: 440-449. doi: 10.1109/ICPP.2012.23. HANDE P, CHIANG M, CALDERBANK R, et al. Network pricing and rate allocation with content provider participation[C]. IEEE International Conference on Computer Communications (INFOCOM), Rio de Janeiro, 2011: 990-998. NEELY M J. Universal scheduling for networks with arbitrary traffic, channels, and mobility[C]. The 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, 2010: 1822-1829. doi: 10.1109/CDC.2010.5717885. -
計(jì)量
- 文章訪問(wèn)數(shù): 1259
- HTML全文瀏覽量: 127
- PDF下載量: 210
- 被引次數(shù): 0