業(yè)務(wù)感知的自適應(yīng)協(xié)作頻譜感知算法
doi: 10.11999/JEIT160582 cstr: 32379.14.JEIT160582
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61371113, 61601248)
Service Awareness Based Adaptive Cooperative Spectrum Sensing Algorithm
Funds:
The National Natural Science Foundation of China (61371113, 61601248)
-
摘要: 為提高次用戶接入業(yè)務(wù)端到端傳輸性能,該文提出通過(guò)感知節(jié)點(diǎn)檢測(cè)性能和業(yè)務(wù)類型的頻譜檢測(cè)與資源分配聯(lián)合優(yōu)化方法。首先,將上周期全局檢測(cè)性能構(gòu)造的有效檢測(cè)指數(shù)作為調(diào)節(jié)權(quán)值,計(jì)算信道狀態(tài)自適應(yīng)協(xié)作門限,據(jù)此選擇協(xié)作模式,以最大化有效檢測(cè)區(qū)間,并根據(jù)頻帶穩(wěn)定性和有效性特征構(gòu)造可用頻譜空間。隨后,基于業(yè)務(wù)請(qǐng)求接入速率將接入業(yè)務(wù)分為時(shí)延敏感業(yè)務(wù)和可靠性敏感業(yè)務(wù)兩類,通過(guò)業(yè)務(wù)屬性匹配的頻譜分配算法提高接入業(yè)務(wù)的端到端傳輸成功率。仿真顯示,在不同信道狀態(tài)下,所提算法通過(guò)自適應(yīng)調(diào)整全局檢測(cè)性能擴(kuò)大了Rayleigh衰落信道的有效頻譜檢測(cè)區(qū)間,降低了時(shí)延敏感業(yè)務(wù)的中斷概率。
-
關(guān)鍵詞:
- 頻譜檢測(cè) /
- 頻譜分配 /
- 自適應(yīng)協(xié)作 /
- 業(yè)務(wù)感知
Abstract: Joint optimization of cooperative spectrum detection and resource allocation based on the service profile is investigated to enhance end-to-end transmission performance of the secondary users by selecting the sensing nodes. At first, the adaptive cooperation thresholds are adjusted according to the weight of available detection index based on the global detection metrics in the last round. And the optimal cooperative mode can be selected to maximize the available sensing region. The idle channels are managed depend on the stability and the available bandwidth metrics for different secondary users. Then, the secondary users can be divided into two categories based on the requested rates, delay sensitive services and reliability sensitive services. The idle channels for the secondary users with different quality of service demands are selected depend on the service profile for enhancing end-to-end transmission performance. Simulation results show that the proposed algorithm can expand the available sensing region through adjusting the global detection metrics adaptively in Rayleigh fading channel and increase the resource utility by decreasing the outage of delay sensitive services.-
Key words:
- Spectrum detection /
- Spectrum allocation /
- Adaptive cooperation /
- Service awareness
-
岳文靜, 鄭寶玉, 孟慶民, 等. 衰落信道下提高協(xié)作頻譜感知能力的方法[J]. 中國(guó)科學(xué): 信息科學(xué), 2011, 41(2): 207-218. YUE Wenjing, ZHENG Baoyu, MENG Qingmin, et al. Robust cooperative spectrum sensing schemes for fading channels in cognitive radio networks[J]. Scientia Sinica: Informationis, 2011, 41(2): 207-218. MASOTA M T, MZYECE M, and NTLATLAPA N. Spectrum decision in cognitive radio networks: A survey[J]. IEEE Communications Surveys Tutorials, 2013, 15(3): 1088-1107. doi: 10.1109/SURV.2012.111412.00160. OMER A E. Review of spectrum sensing techniques in cognitive radio netwoks[C]. International Conference on Computing, Control, Networking, Electronics Embedded Systems Engineering, Khartoum, Sudan, 2015: 439-446. doi: 10.1109/ICCNEEE.2015.7381409. SOBRON I, DINIZ P S R, MARTINS W A, et al. Energy detection technique for adaptive spectrum sensing[J]. IEEE Transactions on Communications, 2015, 63(3): 617-627. doi: 10.1109/TCOMM.2015.2394436. NALLAGONDA S, ROY S D, and KUNDU S. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels[J]. Journal of King Saud University - Computer and Infromation Sciences, 2016, 28(2): 170-183. doi: 10.1016/j.jksuci.2014.04.009. LEE Dongjun. Adaptive random access for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 831-840. doi: 10.1109/TWC.2014.2360857. 于美婷, 趙林靖, 李釗. 基于DS證據(jù)理論的協(xié)作頻譜感知改進(jìn)方法[J]. 通信學(xué)報(bào), 2014, 35(3): 168173. doi: 10.3969/ j.issn.1000-436x.2014.03.019. YU Meiting, ZHAO Linjing, and LI Zhao. Improved cooperative spectrum sensing scheme based on Dempster-Shafer theory in cognitive radio network[J]. Journal on Communications, 2014, 35(3): 168-173. doi: 10.3969/j.issn.1000-436x.2014.03.019. XU Yuhua, ALAGAN A, WU Qihui, et al. Decision-theoretic distributed channel selection for opportunistic spectrum access: Strategies, challenges and solutions[J]. IEEE Communications Surveys Tutorials, 2013, 15(4): 1689-1713. doi: 10.1109/ SURV.2013.030713.00189. JANATIAN N, HASHEMI M M, and SUN Sumei. Joint versus separate spectrum sensing and resource allocation in OFDMA-based cognitive radio networks[J]. IET Communications, 2015, 10(7): 839-847. doi: 10.1049/iet-com. 2015.0912. RAKOVIC K, DENKOVSKI D, ATANASOVSKI V, et al. Capacity-aware cooperative spectrum sensing based on noise power estimation[J]. IEEE Transactions on Communications, 2015, 63(7): 2428-2441. doi: 10.1109/TCOMM.2015.2433297. 劉俊彤, 王可人, 張興良, 等. 基于不同需求等級(jí)改進(jìn)的動(dòng)態(tài)頻譜分配算法[J]. 探測(cè)與控制學(xué)報(bào), 2014, 36(1): 3236. LIU Juntong, WANG Keren, ZHANG Xingliang, et al. Improved dynamic spectrum allocation algorithm based on different levels of service demand[J]. Journal of Detection Control, 2014, 36(1): 32-36. 金順福, 解洪亭, 趙媛. 帶有組間切換的認(rèn)知無(wú)線網(wǎng)絡(luò)混合式信道分配策略及性能研究[J]. 通信學(xué)報(bào), 2013, 34(12): 11-19. doi: 10.3969/jSssn.1000-436x.2013.12.002. JIN Shunfu, XIE Hongting, and ZHAO Yuan. Hybrid channel allocation strategy with group switching and performance evaluation in cognitive radio network[J]. Journal on Communications, 2013, 34(12): 11-19. doi: 10.3969/jSssn. 1000-436x.2013.12.002. ZHAO Nan. Joint optimization of cooperative spectrum sensing and resource allocation in multi-channel cognitive radio sensor networks[J]. Circuits, Systems, and Signal Processing, 2016, 35(7): 2563-2583. doi: 10.1007/s00034-015-0153-9. KHALD L and ANPALAGAN A. Adaptive assignment of heterogeneous users for group-based cooperative spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 232-246. doi: 10.1109/TWC.2015.2469667. RAHMAN D M, YOUSOF N, and KAUSHIK R C. Spectrum allocation and QoS provisioning framework for cognitive radio with heterogeneous service classes[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3938-3950. doi: 10.1109/TWC.2014.2319307. ZAMEN B, ABBAS Z H, and LI F Y. Spectrum occupancy and residual service analysis in CRNs using a multi-server queueing model[C]. IEEE 81st Vehicular Technology Conference, Glasgow, Scotland, 2015: 1-5. doi: 10.1109/VTCSpring.2015. 7146102. -
計(jì)量
- 文章訪問(wèn)數(shù): 1544
- HTML全文瀏覽量: 116
- PDF下載量: 413
- 被引次數(shù): 0