Levy噪聲驅動下指數型單穩(wěn)系統(tǒng)的隨機共振特性分析
doi: 10.11999/JEIT160579 cstr: 32379.14.JEIT160579
基金項目:
國家自然科學基金(61371164),重慶市杰出青年基金(CSTC2011jjjq40002),重慶市教育委員會科研項目(KJ130524)
Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise
Funds:
The National Natural Science Foundation of China (61371164), The Chongqing Distinguished Youth Foundation (CSTC2011jjjq40002), The Research Project of Chongqing Educational Commission (KJ130524)
-
摘要: 該文基于絕對值型和指數型勢函數,構建了更一般的指數型單穩(wěn)勢函數,深入研究了Levy噪聲驅動的指數型單穩(wěn)系統(tǒng),并總結出不同特征指數和不同對稱參數下,指數型系統(tǒng)參數l和b,Levy噪聲強度系數D對指數系統(tǒng)共振輸出的作用規(guī)律。研究表明:在不同Levy噪聲驅動下,通過調節(jié)參數l和b均可誘導隨機共振(SR),且當b(或l)的取值越大時,產生較好隨機共振效果l(或b)的區(qū)間越大,從而改善傳統(tǒng)SR系統(tǒng)由于參數選擇不當造成隨機共振效果不佳的問題。此外,通過調節(jié)噪聲強度系數D也能產生隨機共振,且較好隨機共振區(qū)間不隨或變化;最后將指數型單穩(wěn)系統(tǒng)應用于軸承故障檢測,效果明顯優(yōu)于傳統(tǒng)雙穩(wěn)系統(tǒng)。
-
關鍵詞:
- 指數型單穩(wěn)系統(tǒng) /
- Levy噪聲 /
- 隨機共振 /
- 軸承故障檢測
Abstract: Based on the absolute and exponential monostable potential, a generalized exponential type single-well potential function is constructed. The laws for the resonant output of monostable system governed byl andb,D of Levy noise are explored under different characteristic index and symmetry parameter of Levy noise. The results show that the stochastic resonance phenomenon can be induced by adjusting the exponential type parametersl and b under any or of Levy noise. The larger b (or l) is, the wider parameter interval of l (or b) can induce SR (Stochastic Resonance). The ESR (Exponential SR) system can solve the problem that the traditional system can not achieve SR due to the improper selection of parameters. The interval of D of Levy noise, which induces good stochastic resonance, does not change with or. At last, the proposed exponential type monostable is applicated to detect bearing fault signals, which achieves better performance compared with the traditional bisabled system. -
EINSTEIN A. ?ber die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flssigkeiten suspendierten teilchen[J]. Annalen der Physik, 1905, 17(8): 549-560. BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11) 453-457. doi: 10.1088/0305-4470/14/11/006. 梁軍利, 楊樹元, 唐志峰. 基于隨機共振的微弱信號檢測[J].電子與信息學報, 2006, 28(6): 1068-1072. LIANG Junli, YANG Shuyuan, and TANG Zhifeng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072. WANG Zhanqing, XU Y, and YANG H. Levy noise induced stochastic resonance in an FHN model[J]. Science China Technological Sciences, 2016, 59(3): 371-375. doi: 10.1007/ s11431-015-6001-2. GITTERMAN M. Classical harmonic oscillator with multiplicative noise[J]. Physica A Statistical Mechanics Its Applications, 2005, 352(s 2/4): 309-334. doi: 10.1016/j.physa. 2005.01.008. 鄭俊, 林敏. 基于雙共振的微弱信號檢測方法與試驗研究[J]. 機械工程學報, 2014, 50(12): 11-16. doi: 10.3901/JME.2014. 12.011. ZHENG Jun and LIN Min. Experimental research of weak signal detection method based on the dual-resonance[J]. Journal of Mechanical Engineering 2014, 50(12): 11-16. doi: 10.3901/JME.2014.12.011. 陸思良. 基于隨機共振的微弱信號檢測模型及應用研究[D]. [博士論文], 中國科學技術大學, 2015. LU Siliang. Models and applications of stochastic resonance based weak signal detection[D]. [Ph.D. dissertation], University of Science and Technology of China, 2015. 田祥友, 冷永剛, 范勝波. 一階線性系統(tǒng)的調參隨機共振研究[J]. 物理學報, 2013, 62(2): 95-102. doi: 10.7498/aps.62.020505. TIAN Xiangyou, LENG Yonggang, and FAN Shengbo. Parameter-adjusted stochastic resonance of first-order linear system[J]. Acta Physica Sinica, 2013 62(2): 95-102. doi: 10.7498/aps.62.020505. 袁季冬, 張路, 羅懋康. 冪函數型單勢阱隨機振動系統(tǒng)的廣義隨機共振[J]. 物理學報, 2014, 63(16): 242-252. doi: 10.7498/ aps.63.164302. YUAN Jidong, ZHANG Lu, and LUO Maokang. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16): 242-252. doi: 10.7498/aps.63.164302. 賴志慧, 冷永剛. 三穩(wěn)系統(tǒng)的動態(tài)響應及隨機共振[J]. 物理學報, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503. LAI Zhihui and LENG Yonggang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta Physica Sinica, 2015, 64(20): 77-88. doi: 10.7498/aps.64.200503. GILBARG D and TRUDINGER N S. Elliptic Partial Differential Equations of Second Order[M]. Berlin Heidelberg, Springer-Verlag. 1977: 469-484. CHAMBERS J M. Display and analysis of spatial data: NATO advanced study institute[J]. Journal of the American Statistical Association, 1976, 71(355): 768-769. doi: 10.2307 /2285621. WERON R. On the Chambers-Mallows-Stuck method for simulating skewed stable random variables[J] Statistics Probability Letters, 1996, 28(2): 165-171. doi: 10.1016/0167- 7152(95)00113-1. 張剛, 胡韜, 張?zhí)祢U. Levy噪聲激勵下的冪函數型單穩(wěn)隨機共振特性分析[J]. 物理學報, 2015, 64(22): 72-81. doi: 10.7498/ aps.64.220502. ZHANG Gang, HU Tao, and ZHANG Tianqi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise[J]. Acta Physica Sinica, 2015, 64(22): 72-81. doi: 10.7498/aps.64.220502. ZHANG Haibin, HE Qingbo, and KONG Fanrang. Stochastic resonance in an underdamped system with pinning potential for weak signal detection[J]. Sensors, 2015, 15(9): 21169-21195. doi: 10.3390/s150921169. QIAO Zijian and PAN Zhengrong. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient[J]. Measurement Science Technology, 2015, 26(8): 15-30. doi: 10.1088/0957-0233/26/8/085014. -
計量
- 文章訪問數: 1284
- HTML全文瀏覽量: 130
- PDF下載量: 378
- 被引次數: 0