基于二元譯碼信息的迭代大數(shù)邏輯LDPC譯碼算法及其量化優(yōu)化
doi: 10.11999/JEIT160563 cstr: 32379.14.JEIT160563
基金項目:
國家自然科學(xué)基金(61261023, 61362010, 61661005),廣西自然科學(xué)基金(2014GXNSFBA118276)
Binary Decoding Message Iterative Majority-logic LDPC Decoding and Its Quantizing Optimization
Funds:
The National Natural Science Foundation of China (61261023, 61362010, 61661005), The Natural Science Foundation of Guangxi (2014GXNSFBA118276)
-
摘要: 該文提出一種低復(fù)雜度的迭代大數(shù)邏輯LDPC譯碼算法,在迭代過程中所有的譯碼信息都以二元形式進行傳遞、處理和迭代更新。所提算法不需要計算外信息,而是利用Tanner圖上伴隨式的對錯狀態(tài)來評判節(jié)點可靠度。與現(xiàn)有的幾種迭代大數(shù)邏輯譯碼算法相比,該文算法也不需要信息修正處理,避免了相應(yīng)的實數(shù)乘法操作,具有很低的譯碼復(fù)雜度。此外,該文引入一種特殊的量化處理函數(shù),并給出了基于離散密度進化的參數(shù)優(yōu)化過程。實驗仿真表明,該文所提算法與原算法相比,在AWGN信道下可獲得約0.3~0.4 dB的性能提升。同時,由于節(jié)點間交換傳遞的譯碼信息都是基于1個比特位的二元信息,也非常便于硬件的設(shè)計與實現(xiàn)。Abstract: A low complexity iterative majority-logic decoding algorithm is presented. For the presented algorithm, binary decoding messages are involved in the message passing, processing and updating process. Instead of computing the extrinsic information, the presented algorithm computes the reliability measure based on syndrome states (correct or error) in the Tanner graph. Compared with several existing iterative majority-logic decoding algorithms, the presented algorithm does not require the information scaling and hence can avoid the corresponding real multiplication operations. This leads to very low decoding complexity. Furthermore, a special quantization is combined with the presented algorithm. The optimization method is also given based on the discrete Density Evolution (DE). Simulation results show that, compared with the original algorithm, the presented algorithm can achieve about 0.3~0.4 dB performance gain over the Additive White Gaussian Noise (AWGN) channel. Moreover, all the decoding messages exchanged among the nodes are binary-based, which makes the presented algorithm convenient for the hardware implementations.
-
Key words:
- Decoding algorithm /
- LDPC codes /
- Majority-logic /
- Quantization /
- Syndrome message
-
GALLAGER R G. Low density parity check codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28. doi: 10.1109/ TIT.1962.1057683. CHEN X, KANG J, and LIN S. Memory system optimization for FPGA-based implementation of Quasi-cyclic LDPC codes decoders[J]. IEEE Transactions on Circuits and System, 2011, 58(1): 98-111. doi: 10.1109/TCSI.2010.2055250. GUTIERREZ F, GRACIELA C, MORERO D, et al. FPGA implementation of the parity check node for min-sum LDPC decoders[C]. IEEE Conference on Programmable Logic, Bento Goncalves, 2012: 1-6. doi: 10.1109/SPL.2012.6211802. KOU Y, LIN S, and FOSSORIER M. Low-density parity-check codes based on finite geometries: a discovery and new results[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2711-2736. doi: 10.1109/18.959255. HUANG Q, KANG J Y, ZHANG L, et al. Two reliability-based iterative majority-logic decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2009, 57(12): 3597-3606. doi: 10. 1109/TCOMM.2009.12. 080493. CATALA P J M, GARCIA F, VALLS J, et al. Reliability-based iterative decoding algorithm for LDPC codes with low variable-node degree[J]. IEEE Communications Letters, 2014, 18(12): 2065-2068. doi: 10.1109/LCOMM.2014.2363112. CHEN H, ZHANG K, MA X, et al. Comparisons between reliability-based iterative min-sum and majority-logic decoding algorithms for LDPC codes[J]. IEEE Transactions on Communications, 2011, 59(7): 1766-1771. doi: 10.1109/ TCOMM.2011.060911.100065. NGATCHED T M N, ATTAHIRU S, and JUN C. An improvement on the soft reliability-based iterative majority-logic decoding algorithm for LDPC codes[C]. Proceedings of 2010 IEEE Global Telecommunications Conference, Miami, USA, 2010: 1-5. doi: 10.1109/GLOCOM. 2010.5684111. 陶雄飛, 王躍東, 柳盼. 基于變量節(jié)點更新的LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法[J]. 電子與信息學(xué)報, 2016, 38(3): 688-693. doi: 10.11999/JEIT150720. TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics Information Technology, 2016, 38(3): 688-693. doi: 10.11999/ JEIT150720. 陳海強, 羅靈山, 孫友明, 等. 基于大數(shù)邏輯可譯LDPC碼的譯碼算法研究[J].電子學(xué)報, 2015, 43(6): 1169-1173. doi: 10.3969/j.issn. 0372-2112.2015.06.019. CHEN Haiqiang, LUO Lingshan, SUN Youming, et al. Decoding algorithms for majority-logic decodable LDPC codes[J]. Acta Electronica Sinica, 2015, 43(6): 1169-1173. doi: 10.3969/j.issn.0372-2112.2015.06.019. ZHANG K, CHEN H, and MA X. Adaptive decoding algorithms for LDPC codes with redundant check nodes[C]. 2012 7th IEEE International Symposium on Turbo codes and Iterative Information Processing(ISTC), Gothenburg, 2012: 175-179. doi: 10.1109/ISTC.2012.6325222. RICHARDSON T J and URBANKE R L. The capacity of low density parity check codes under message-passing decoding[J]. IEEE Transactions on Information Theory, 2001, 47(2): 599-618. doi: 10.1109/18.910577. TANNER R M. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533-547. doi: 10.1109/TIT.1981.1056404. LI X, QIN T, CHEN H, et al. Hard-information bit- reliability based decoding algorithm for majority-logic decodable non-binary LDPC codes[J]. IEEE Communications Letters, 2016, 20(5): 886-869. doi: 10.1109/LCOMM.2016.2537812. -
計量
- 文章訪問數(shù): 1353
- HTML全文瀏覽量: 135
- PDF下載量: 462
- 被引次數(shù): 0