基于循環(huán)前綴的相位編碼OFDM雷達(dá)多普勒頻移估計(jì)和補(bǔ)償
doi: 10.11999/JEIT160549 cstr: 32379.14.JEIT160549
基金項(xiàng)目:
國家自然科學(xué)基金(61501481, 61422114),湖南省杰出青年基金(2015JJ1003)
Cyclic Prefix Based Phase-coded OFDM Radar Doppler Offset Estimation and Compensation
Funds:
The National Natural Science Fundation of China (61501481, 61422114), The Natural Science Fundation for Distinguished Yong Scholars of Hunan Province (2015JJ1003)
-
摘要: 相位編碼正交頻分復(fù)用(PC-OFDM)雷達(dá)是近年來新體制雷達(dá)研究熱點(diǎn)之一。該雷達(dá)信號對正交多載頻進(jìn)行相位調(diào)制,同時(shí)具有距離、多普勒高分辨。然而,PC-OFDM雷達(dá)對多普勒頻偏較為敏感,該文研究了PC-OFDM雷達(dá)基于循環(huán)前綴(CP)對多普勒頻偏進(jìn)行估計(jì),并基于估計(jì)值對頻偏進(jìn)行補(bǔ)償,再進(jìn)行脈沖壓縮。仿真實(shí)驗(yàn)證明,該文方法能有效改善多普勒頻偏所帶來的1維距離像結(jié)構(gòu)破壞和旁瓣抬升。
-
關(guān)鍵詞:
- 相位編碼OFDM雷達(dá) /
- 多載頻 /
- 多普勒頻偏估計(jì) /
- 循環(huán)前綴
Abstract: Phase-Coded Orthogonal Frequency Division Multiplexing (PC-OFDM) radar has drawn wide attention in high resolution radar application. This kind of radar signal transmits orthogonal sub-carriers phase-modulated by specific sequences and has range and Doppler high resolution at the same time. Considering its sensitivity to Doppler offset, this paper derives the pulse compression method of PC-OFDM radar, and based on Cyclic Prefix (CP), a Doppler offset estimation and compensation algorithm is proposed. Several simulations verify the effectiveness of the method in improving High Resolution Range Profile (HRRP) with Doppler offset.-
Key words:
- Phase-coded OFDM radar /
- Multi-carrier /
- Doppler offset estimation /
- Cyclic prefix
-
JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, 1998: 548-589. doi: 10.1109/EUMA.1998.338053. LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276-284. doi: 10.1049/ip-rsn 20000734. LEVANON N. Train of diverse multifrequency radar pulses [C]. Proceedings of the IEEE International Radar Conference, Atlanta, GA, 2001: 93-98. doi: 10.1109/NRC.2001.922958. FINK J and JONDRAL F K. Comparison of OFDM radar and chirp sequence radar[C]. 16th International Radar Symposium, Dresden, Germany, 2015: 315-320. doi: 10.1109/ IRS.2015.7226369. 趙志欣, 萬顯榮, 謝銳, 等. 載波頻偏對正交頻分復(fù)用波形外輻射源雷達(dá)性能的研究[J]. 電子與信息學(xué)報(bào), 2013, 35(4): 871-876. doi: 10.3724/SP.J.1146.2012.01011. ZHAO Zhixin, WAN Xianrong, XIE Rui, et al. Impact of carrier frequency offset on passive bistatic radar with orthogonal frequency division multiplexing waveform[J]. Journal of Electronics Information Technology, 2013, 35(4): 871-876. doi: 10.3724/SP.J.1146.2012.01011. LELLOUCH G, MISHRA A, and INGGS M. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar[C]. IEEE Radar Conference, Cincinnati, 2014: 803-808. doi: 10.1109/GEMCCON.2015.7386829. DENG Bin, SUN Bin, WEI Xizhang, et al. A velocity estimation method for multi carrier phase-coded radar[C]. 2nd International Conference on Information Management and Engineering, Chengdu, China, 2010, 4: 227-230. doi: 10.1109/ICIME.2010.5478067. LIM Jinsoo, KIM Sungrae, and SHIN Dongjoon. Two-step Doppler estimation based on intercarrier interference mitigation for OFDM radar[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1726-1729. doi: 10.1109/ LAWP.2015.2421054. TURLAPATY Anish, JIN Yuanwei, and XU Yang. Range and velocity estimation of radar targets by weighted OFDM modulation[C]. IEEE Radar Conference, Cincimnati, 2014: 1358-1362. KASHIN V A and MAVRYCHEV E A. Target velocity estimation in OFDM radar based on subspace approaches[C]. 14th International Radar Symposium, Dresden, 2013: 1061-1066. GU Wenkun, WANG Dangwei, and MA Xiaoyan. High speed moving target detection using distributed OFDM-MIMO phased radar[C]. 12th International Conference on Signal Processing, Hangzhou, China, 2014: 2087-2091. doi: 10.1109/ ICOSP.2014.7015362. 王杰, 梁興東, 丁赤飚, 等. OFDM SAR多普勒補(bǔ)償方法研究[J]. 電子與信息學(xué)報(bào), 2013, 35(12): 3037-3040. doi: 10.3724/ SP.J.1146.2012.01547. WANG Jie, LIANG Xingdong, DING Chibiao, et al. Investigation on the Doppler compensation in OFDM SAR[J]. Journal of Electronics Information Technology, 2013, 35(12): 3037-3040. doi: 10.3724/SP.J.1146.2012.01547. LIU Yongxiang, ZHANG Shuanghui, ZHU Dekang, et al. A novel speed compensation method for ISAR imaging with low SNR[J]. Sensor, 2015, 15(8): 18402-18415. doi: 10.3390/ s150818402. ZHANG Tianxian and XIA Xianggen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394-404. doi: 10.1109/TGRS.2014.2322813. CAO Yunhe and XIA Xianggen. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff- Chu sequences[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1126-1130. doi: 10.1109/LGRS.2014.2385693. BEEK VAN DE J J, SANDELL M, ISAKSSON M, et al. Low complex frame synchronization in OFDM systems[C]. Proceedings of the IEEE International Coference on Universal Personal Communications, 1995: 982-986. doi: 10.1109/ICUPC.1995.497156. 霍凱, 趙晶晶. 一種基于Bernoulli混沌的四相OFDM雷達(dá)信號設(shè)計(jì)方法[J]. 雷達(dá)學(xué)報(bào), 2016, 5(4): 361-372. doi: 10.12000/ JR16050. HUO Kai and ZHAO Jingjing. A design method of four- phase-coded OFDM radar signal based on Bernoulli chaos[J]. Journal of Radars, 2016, 5(4): 361-372. doi: 10.12000/ JR16050. -
計(jì)量
- 文章訪問數(shù): 1746
- HTML全文瀏覽量: 279
- PDF下載量: 449
- 被引次數(shù): 0