存在I/Q不平衡的OFDM全雙工雙向譯碼轉(zhuǎn)發(fā)中繼系統(tǒng)及其性能分析
doi: 10.11999/JEIT160545 cstr: 32379.14.JEIT160545
-
1.
(重慶大學飛行器測控與通信教育部重點實驗室 重慶 400044) ②(重慶大學通信工程學院 重慶 400044)
國家863計劃項目(2015AA7072014C),重慶市院士基金項目(cstc2014yykfys90001),中央高?;緲I(yè)務費項目(106112013CDJZR165502, CDJZR14100050)
OFDM Full-duplex Bidirectional DF Relaying System with I/Q Imbalance and Performance Analysis
-
1.
(Key Laboratory of Aerocraft Tracking Telemetering &
-
2.
(College of Communication Engineering, Chongqing University, Chongqing 400044, China)
The National 863 Program of China (2015AA 7072014C), The Chongqing Academician Fund Project (cstc2014 yykfys90001), The Fundamental Research Funds for the Central Universities (106112013CDJZR165502, CDJZR14100050)
-
摘要: 全雙工技術(shù)可以使頻譜利用率翻倍,是5 G系統(tǒng)的關(guān)鍵技術(shù)之一。采用直接變換結(jié)構(gòu)的全雙工系統(tǒng)中殘余自干擾(Residual Self-Interference, RSI)和同相/正交(In-phase/Quadrature, I/Q)不平衡是限制系統(tǒng)性能的兩大主要因素。該文針對存在I/Q不平衡的OFDM全雙工雙向中繼系統(tǒng),建立了譯碼轉(zhuǎn)發(fā)中繼模式下的全雙工系統(tǒng)信號模型,分析了瑞利衰落信道下系統(tǒng)的中斷性能,獲得了系統(tǒng)中斷概率的閉式表達式。仿真結(jié)果不僅驗證了理論分析的正確性,還得到結(jié)論:隨著I/Q不平衡程度和殘余自干擾強度的降低,系統(tǒng)中斷性能將得到改善;只有沿著最速下降路線降低I/Q不平衡或中繼節(jié)點RSI,才能實現(xiàn)最優(yōu)的性能提升;通過系統(tǒng)I/Q不平衡與RSI參數(shù)所在的坐標點和最速下降路線的相對位置關(guān)系,來確定改善全雙工雙向中繼系統(tǒng)中斷性能的最優(yōu)措施。Abstract: The full-duplex transmission is one of the key technologies in the 5 G communication systems, due to the ability of improving spectrum efficiency. However, the performance of the full-duplex system, with the zero intermediate frequency structure, is badly impacted by the Residual Self-Interference (RSI) and In-phase/ Quadrature (I/Q) imbalance. In this paper, the OFDM full-duplex bidirectional relaying system under the RSI and I/Q Imbalance (IQI) is investigated, in a cooperative scenario where the Decode-and-Forward (DF) protocol is considered. The outage performance of the system and its closed-form expressions are derived under Rayleigh fading channels, and the influences of the IQI and RSI on system performances are analyzed, respectively. The simulation results verify the analysis, and the conclusions are given as follows. First, the outage performance improves as decreasing of the IQI and RSI. Second, the optimal improvement of outage performance is achieved by reducing the RSI and I/Q imbalance, according the route with the steepest descent method. Third, the best way for enhancing the outage performance is chosen, by the relative position between the steepest descent route and the current coordinate of IQI-RSI.
-
ZHANG X, CHENG W, and ZHANG H. Full-duplex transmission in PHY and MAC layers for 5 G mobile wireless networks[J]. IEEE Wireless Communications, 2015, 22(5): 112-121. doi: 10.1109/MWC.2015.7306545. ZHANG Z, LONG K, VASILAKOS AV, et al. Full-duplex wireless communications: Challenges, solutions, and future research directions[J]. Proceedings of the IEEE, 2016, 104(7): 1369-1409. doi: 10.1109/JPROC.2015.2497203. ZHANG Z, CHAI X, LONG K, et al. Full duplex techniques for 5 G networks: Self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128-137. doi: 10.1109/MCOM.2015. 7105651. HONG S, BRAND J, CHOI J, et al. Applications of self-interference cancellation in 5 G and beyond[J]. IEEE Communications Magazine, 2014, 52(2): 114-121. doi: 10. 1109/MCOM.2014.6736751. SYRJALA V, VALKAMA M, ANTTILA L, et al. Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 2977-2990. doi: 10.1109/TWC.2014.041014.131171. KORPI D, RIIHONEN T, SYRJALA V, et al. Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3821-3836. doi: 10.1109/ TWC.2014.2315213. HORLIN F and BOURDOUX A. Digital Compensation for Analog Front-Ends[M]. England: Wiley, 2008: 71-95. GUPTA A and JHA R K. A survey of 5 G network: Architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206-1232. doi: 10.1109/ACCESS.2015.2461602. RATAJCZAK K, BAKOWSKI K, and WESOLOWSKI K. Two-way relaying for 5 G systems: Comparison of network coding and MIMO techniques[C]. IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014: 376-381. doi: 10.1109/WCNC.2014. 6952037. 歐靜蘭, 吳皓威, 鄒玉濤, 等. 過時信道狀態(tài)下機會雙向中繼選擇算法[J]. 北京郵電大學學報, 2014, 37(6): 44-48. doi: 10.13190/j.jbupt.2014.06.009. OU Jinglan, WU Haowei, ZOU Yutao, et al. Opportunistic two-way relay selection scheme with outdated channel state information[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(6): 44-48. doi: 10.13190/ j.jbupt.2014.06.009. MOKHTAR M, GOMAA A, and AL-DHAHIR N. OFDM AF relaying under I/Q imbalance: Performance analysis and baseband compensation[J]. IEEE Transactions on Communications, 2013, 61(4): 1304-1313. doi: 10.1109/ TCOMM.2013.020813.120576. MOKHTAR M, BOULOGEORGOS A, KARAGIANNIDIS G K, et al. OFDM opportunistic relaying under joint transmit/receive I/Q imbalance[J]. IEEE Transactions on Communications, 2014, 62(5): 1458-1468. doi: 10.1109/ TCOMM.2014.022314.130911. MOKHTAR M, Al-DHAHIR N, and HAMILA R. I/Q imbalance and loop-back self-interference effects in full-duplex OFDM DF relays[C]. IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 2015: 81-86. doi: 10.1109/TCOMM.2014. 2325036. MOKHTAR M, Al-DHAHIR N, and HAMILA R. OFDM full-duplex DF relaying under I/Q imbalance and loopback self-interference[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6737-6741. doi: 10.1109/TVT.2015. 2479257. LI J, MATTHAIOU M and SVENSSON T. I/Q imbalance in two-way AF relaying[J]. IEEE Transactions on Communications, 2014, 62(7): 2271-2285. doi: 10.1109/ TCOMM.2014.2325036. WANG Z, HUANG J, ZHOU S, et al. Iterative receiver processing for OFDM modulated physical-layer network coding in underwater acoustic channels[J]. IEEE Transactions on Communications, 2013, 61(2): 541-553. doi: 10.1109/TCOMM.2012.022513.120085. -
計量
- 文章訪問數(shù): 1154
- HTML全文瀏覽量: 113
- PDF下載量: 468
- 被引次數(shù): 0