基于稀疏重構(gòu)的共形陣列穩(wěn)健自適應(yīng)波束形成算法
doi: 10.11999/JEIT160436 cstr: 32379.14.JEIT160436
基金項目:
國家自然科學(xué)基金(61401469)
Robust Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Reconstruction
Funds:
The National Natural Science Foundation of China (61401469)
-
摘要: 針對共形陣列天線自適應(yīng)波束形成中存在的通用性差、主瓣保形困難、計算復(fù)雜度高等問題,該文提出一種基于稀疏重構(gòu)的穩(wěn)健自適應(yīng)波束形成算法。該算法通過引入漸進(jìn)最小方差準(zhǔn)則,實現(xiàn)了干擾加噪聲協(xié)方差矩陣的稀疏重構(gòu),并得到期望方向上的導(dǎo)向矢量估計,進(jìn)而求得波束形成器的最優(yōu)權(quán)矢量。該算法無需復(fù)雜的子陣分解或虛擬映射變換,適用于任意陣列形狀。仿真實驗驗證了該算法不僅保證了期望的主瓣響應(yīng),同時對指向誤差有較好的穩(wěn)健性。與現(xiàn)有算法相比,該算法所需采樣快拍數(shù)少,計算復(fù)雜度低,收斂速度快,在較大的輸入信噪比范圍內(nèi)達(dá)到了較好的陣列輸出性能。
-
關(guān)鍵詞:
- 穩(wěn)健自適應(yīng)波束形成 /
- 共形陣列 /
- 漸進(jìn)最小方差準(zhǔn)則 /
- 稀疏重構(gòu)
Abstract: Adaptive beamforming techniques for conformal arrays suffer from poor universality, difficulty to maintain the main beam and high computational cost. A novel robust adaptive beamforming algorithm for conformal arrays based on sparse reconstruction is proposed to alleviate the existing problems. Firstly, by introducing the Asymptotic Minimum Variance (AMV) criterion, the Interference-Plus-Noise (IPN) covariance matrix reconstruction is realized in a sparse way. Secondly, the Steering Vector (SV) of the Signal Of Interest (SOI) is estimated. Finally, the optimal weight coefficients are achieved. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior output performance over the existing adaptive beamforming methods for conformal arrays in a large range of Signal to Noise Ratio (SNR) of the SOI. Moreover, the proposed algorithm needs fewer snapshots with a lower computational cost and has a faster convergence rate. -
JOSEFSSON L and PERSSON P. Conformal Array Antenna Theory and Design[M]. New York: John Wiley Sons, 2006: 1-2. SEMKIN V, FERRERO F, BISOGNIN A, et al. Beam switching conformal antenna array for mm-wave communications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 28-31. doi: 10.1109/LAWP. 2015.2426510. YANG Hu, JIN Zusheng, MONTISCI G, et al. Design equations for cylindrically conformal arrays of longitudinal slots[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 80-88. doi: 10.1109/TAP.2015.2496965. ORAIZI H and SOLEIMANI H. Optimum pattern synthesis of non-uniform spherical arrays using the Euler rotation[J]. IET Microwaves, Antennas and Propagation, 2015, 9(9): 898-904. doi: 10.1049/iet-map.2014.0460. HU Wanqiu, WANG Xuesong, LI Yongzhen, et al. Synthesis of conformal arrays with matched dual-polarized patterns[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1341-1344. doi: 10.1109/LAWP.2015.2508438. DORSEY W M, COLEMAN J O, and PICKLES W R. Uniform circular array pattern synthesis using second-order cone programming[J]. IET Microwaves, Antennas and Propagation, 2015, 9(8): 723-727. doi: 10.1049/iet-map.2014. 0418. HUANG Zhijiang, ZHOU Jie, and ZHANG Haiping. Full polarimetric sum and difference patterns synthesis for conformal array[J]. Electronics Letters, 2015, 51(8): 602-604. doi: 10.1049/el.2014.4428. 鄒麟. 基于幾何代數(shù)的共形陣列空域信號處理研究[D]. [博士論文], 電子科技大學(xué), 2012: 54-60. ZOU Lin. Research on spatial signal processing of conformal array based on geometric algebra[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2012: 54-60. YANG Peng, YANG Feng, NIE Zaiping, et al. Robust adaptive beamformer using interpolation technique for conformal antenna array[J]. Progress in Electromagnetics Research B, 2010, 23: 215-228. doi: 10.2528/PIERB10061504. YANG Peng, YANG Feng, NIE Zaiping, et al. Robust beamformer using manifold separation technique for semispherical conformal array[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10(10): 1035-1038. doi: 10.1109/LAWP.2011.2168936. 呂志豐,雷宏. 基于差值映射的壓縮感知MUSIC算法[J]. 電子與信息學(xué)報, 2015, 37(8): 1874-1878. doi: 10.11999/ JEIT141542. L Zhifeng and LEI Hong. Compressive sensing MUSIC algorithm based on difference map[J]. Journal of Electronics Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542. WANG Jian, SHENG Weixing, HAN Yubing, et al. Adaptive beamforming with compressed sensing for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823-833. doi: 10.1109/TAES.2014. 120532. GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881-3885. doi: 10.1109/TSP.2012. 2194289. HUANG Lei, ZHANG Jing, XU Xu, et al. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1643-1650. doi: 10.1109/TSP. 2015.2396002. STOICA P and MOSES R. Spectral Analysis of Signals [M]. New Jersey: Prentice Hall, 2005: 273-281. ABEIDA H, ZHANG Qilin, LI Jian, et al. Iterative sparse asymptotic minimum variance based approaches for array processing[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 933-944. doi: 10.1109/TSP.2012.2231676. DELMAS J P. Asymptotically minimum variance second- order estimation for noncircular signals with application to DOA estimation[J]. IEEE Transactions on Signal Processing, 2004, 52(5): 1235-1241. doi: 10.1109/TSP.2006.873505. STOICA P, BABU P, and LI J. SPICE: A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629-638. doi: 10.1109/TSP.2010.2090525. RASEKH M and SEYDNEJAD S R. Design of an adaptive wideband beamforming algorithm for conformal arrays[J]. IEEE Communications Letters, 2014, 18(11): 1955-1958. doi: 10.1109/LCOMM.2014.2357417. ELNASHAR A, ELNOUBI S M, and EL-MIKATI H A. Further study on robust adaptive beamforming with optimum diagonal loading[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(12): 3647-3658. doi: 10.1109/TAP.2006.886473. -
計量
- 文章訪問數(shù): 1419
- HTML全文瀏覽量: 212
- PDF下載量: 447
- 被引次數(shù): 0