聯(lián)合約束級(jí)聯(lián)交互式多模型濾波器及其在機(jī)動(dòng)目標(biāo)跟蹤中的應(yīng)用
doi: 10.11999/JEIT160384 cstr: 32379.14.JEIT160384
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61340016),安徽省自然科學(xué)基金(1408085MF134),安徽省高校優(yōu)秀青年骨干人才國(guó)內(nèi)外訪學(xué)研修重點(diǎn)項(xiàng)目(gxfxZD2016224)
Unified Constrained Cascade Interactive Multi-model Filter and Its Application in Tracking of Manoeuvring Target
Funds:
The National Natural Science Fundation of China (61340016), Anhui Province Natural Science Foundation (1408085MF134), Anhui Province Youth Leading Talents and Visiting Scholar Key Scheme (gxfxZD2016224)
-
摘要: 該文提出一種新型聯(lián)合約束的級(jí)聯(lián)交互式多模型卡爾曼濾波器,該濾波器由兩個(gè)濾波器前后兩級(jí)串聯(lián)而成;第1級(jí)為標(biāo)準(zhǔn)交互式多模型濾波器;第2級(jí)為聯(lián)合約束濾波器。聯(lián)合約束濾波器的約束條件對(duì)第1級(jí)濾波器中的多模型集合中各子模型均有效。聯(lián)合約束濾波器采用平滑約束卡爾曼濾波算法對(duì)第1級(jí)濾波結(jié)果進(jìn)一步優(yōu)化。以機(jī)動(dòng)目標(biāo)實(shí)時(shí)跟蹤為實(shí)際工程應(yīng)用背景,數(shù)值仿真和飛行實(shí)驗(yàn)結(jié)果證明新的聯(lián)合約束性級(jí)聯(lián)交互式多模型濾波器比標(biāo)準(zhǔn)交互式多模型濾波器具有更小的估計(jì)誤差和方差,所增計(jì)算量合理可行。該文為交互式多模型濾波器和機(jī)動(dòng)目標(biāo)跟蹤兩個(gè)方向的進(jìn)一步改進(jìn)提供了有益借鑒。
-
關(guān)鍵詞:
- 機(jī)動(dòng)目標(biāo)跟蹤 /
- 交互式多模型 /
- 卡爾曼濾波 /
- 狀態(tài)約束方程
Abstract: A novel unified cascade constrained interactive multi-model Kalman filter is put forward. The filter is composed of two cascade connected filters, a standard interactive-multiple-model and a unified constrained filter. The latter is effective for everyone in model set of controlled plant and refines the estimation of the former using smoothly constraint Kalman algorithm. Numerical simulation and flying experiments are made for maneuvering target tracking and lower estimated error and covariance are achieved by the unified cascade constrained interactive multi-model Kalman filter compared with conventional interactive multi-model filter. The added computation cost is reasonable and acceptable. The paper is valuable reference for maneuvering target tracking and interactive multi-model filter. -
YANG Jinlong, JI Hongling, and FAN Zhenhua. Probability hypothesis density filter based on strong tracking MIE for multiple maneuvering targets tracking[J]. International Journal of Control, Automation and Systems, 2013, 11(2): 306-316. LI Bo. Multiple-model Rao-Blackwellized particle CPHD filter for multi-target tracking[J]. Nonlinear Dynamics, 2015, 79(3): 2133-2143. LIU Meiqin, ZHANG Di, and ZHANG Senlin. Bearing-only target tracking using cubature rauch-tung-striebel smoother [C]. 34th Chinese Control Conference, Hangzhou, China, 2015: 4734-4738. EVERS C, MOORE A H, NAYLOR P A, et al. Bearing- only acoustic tracking of moving speakers for robot audition [C]. IEEE International Conference on Digital Signal Processing, Singapore, 2015: 1206-1210. BECKER S, MUNCH D, KIERITZ H, et al. Detecting abandoned objects using interacting multiple models[J]. SPIE, 2015, 96520. doi: 10.1117/12.2195224. SABORDO M G and ABOUTANIOS E. Enhanced performance for the interacting multiple model estimator with integrated multiple filters[J]. SPIE, 2015, 94600: 345-349. doi: 10.1117/12.2176180. MABROUK M B, GRIVEL E, MAGNANT C, et al. Compensating power amplifier distortion in cognitive radio systems with adaptive interacting multiple model[C]. 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 2015: 1212-1216. HUANG H, YANG R, NG G W, et al. Helicopter tracking and classification with multiple interacting multiple model estimator with out-of-sequence acoustic and EO measurements[C]. 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 1132-1139. KIM T H and MOON K R. Variable-structured interacting multiple model algorithm for the ballistic coefficient estimation of a re-entry ballistic target[J]. International Journal of Control, Automation, and systems, 2013, 11(6): 1204-1213. ZHU Zhengwei. Ship-borne radar maneuvering target tracking based on the variable structure adaptive grid interacting multiple model[J]. Journal of Zhejiang University SCIENCE C, 2013, 14(9): 733-742. ZHANG Yuan, GUO Chen, HU Hai, et al. An algorithm of the adaptive grid and fuzzy interacting multiple models[J]. Journal of Marine Science and Application, 2014, 13(3): 340-345. DAN S and TIEN L C. Kalman filtering with state equality constraints[J]. IET Control Theory and Applications, 2010, 4(8): 1303-1318. HARTIKAINEN J, SOLIN A, and SARKKA S. Optimal filtering with kalman filters and smoothers a manual for the MATLAB toolbox EKF/UKF[R]. 2011. 盛驟, 等. 概率論與數(shù)理統(tǒng)計(jì)[M]. 北京: 高等教育出版社, 1989: 73-75. SHENG Zhou, et al. Probability and Statistics[M]. Beijing: High, Education Press, 1989: 73-75. CHIA T. Parameter identification and state estimation of constrained systems[D]. [Ph.D. dissertation], Case Western Reserve University, 1985, 17-25. KO S and BITMEAD R. State estimation for linear systems with state equality constraints[J]. Automatica, 2007, 43(8): 1363-1368. SHIMADA N, SHIRAI Y, KUNO Y, et al. Hand gesture estimation and model refinement using monocular camera- ambiguity limitation by inequality constraints[C]. IEEE International Conference on Automatic Face Gesture Recognition, Japan, 1998: 268-273. SIMON D and SIMON D L. Constrained Kalman filtering via density function truncation for turbofan engine health estimation[J]. International Journal of System Science, 2010, 41(2): 159-171. DE GEETER J, VAN BRUSSEL H, and DE SCHUTTER J. A smoothly constrained Kalman filter[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1997, 19(10): 1171-1177. GOODWIN G, SERON M, and DE DONA J. Constrained control and estimation[M]. Berlin: Springer-Verlag, 2005: 251-262. JULIER S and UHLMANN J. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422. -
計(jì)量
- 文章訪問(wèn)數(shù): 1304
- HTML全文瀏覽量: 134
- PDF下載量: 340
- 被引次數(shù): 0