模糊非基因信息記憶的雙克隆選擇算法
doi: 10.11999/JEIT160359 cstr: 32379.14.JEIT160359
-
2.
(湖南工程學院計算機與通信學院 湘潭 411104) ②(中南大學信息科學與工程學院 長沙 410083) ③(湖南財政經(jīng)濟學院信息管理系 長沙 410205)
國家自然科學基金(61272295, 61673164, 61402540),湖南省自然科學基金(2016JJ6031, 2016JJ2040),湖南省教育廳科學研究項目(16A049, 13A010)
Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory
-
2.
(College of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China)
The National Natural Science Foundation of China (61272295, 61673164, 61402540), The Natural Science Foundation of Hunan Province (2016JJ6031, 2016JJ2040), The Scientific Research Fund of Hunan Provincial Education Department (16A049, 13A010)
-
摘要: 該文針對傳統(tǒng)智能優(yōu)化算法中虛擬碰撞而導致的全局搜索效率降低的問題,提出一種模糊非基因信息記憶的雙克隆選擇算法。該算法設計基于模糊非基因信息的搜索機制與克隆選擇原理相結合,對抗體進化中的非基因信息進行采集、模糊化并保存到記憶庫,運用這些信息引導該抗體后續(xù)的雙克隆搜索過程,從而減少非優(yōu)區(qū)域的虛擬碰撞,提高全局搜索效率。通過標準測試函數(shù)的仿真試驗并與其他算法比較,新算法表現(xiàn)出更快的全局收斂速度和更高的全局收斂精度。
-
關鍵詞:
- 克隆選擇 /
- 智能記憶 /
- 模糊信息 /
- 數(shù)值優(yōu)化
Abstract: To provide a better solution for search efficiency reduction problem caused by pseudo collision in the traditional intelligent optimization algorithms, this paper proposes a double clonal selection algorithm based on fuzzy non-genetic information memory. By combing with clonal selection theory, the search mechanism based on fuzzy non-genetic information memory is well performed. The non-genetic information in antibody evolution is collected, fuzzified and stored in the memory. Using this information to guide the subsequent double cloning search process, it can reduce the pseudo collision in non-optimal area, thus the global search efficiency is improved greatly. Extensive simulations show that the proposed algorithm has fast global convergence rate and high global convergence accuracy. Comparative results further demonstrate that it performs better than existing algorithms.-
Key words:
- Clonal selection /
- Intelligent memory /
- Fuzzy information /
- Numerical optimization
-
DE CASTRO L N and VON ZUBEN F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251. doi: 10.1109/TEVC.2002.1011539. GONG Maoguo, JIAO Licheng, and ZHANG Lining. Baldwinian learning in clonal selection algorithm for optimization[J]. Information Sciences, 2010, 180(8): 1218-1236. doi: 10.1016/j.ins.2009.12.007. IRINA Ciornei and ELIAS Kyriakides. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(1): 234-245. doi: 10.1109/TSMCB. 2011.2164245. HO S L, YANG S Y, BAI Y N, et al. A robust metaheuristic combining clonal colony optimization and population-based incremental learning methods[J]. IEEE Transactions on Magnetics, 2014, 50(2): 677-680. doi: 10.1109/TMAG.2013. 2283886. PENG Y and LU B L. Hybrid learning clonal selection algorithm[J]. Information Sciences, 2015, 296(1): 128-146. doi: 10.1016/j.ins.2014.10.056. TAYARANI-N M, YAO X, and XU M. Meta-heuristic algorithms in car engine design: A literature survey[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 609-629. doi: 10.1109/tevc.2014.2355174. CAMPELO F, GUIMARES F G, IGARASHI H, et al. A clonal selection algorithm for optimization in electromagnetics[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1736-1739. doi: 10.1109/tmag.2005.846043. LIU R C, JAO L C, ZHANG X, et al. Gene transposon based clone selection algorithm for automatic clustering[J]. Information Sciences, 2012, 204(22): 1-22. doi: 10.1016/ j.ins.2012.03.021. SHANG R H, JIAO L C, XU H, et al. Quantum immune Clone for Solving constrained multi-objective Optimization [C]. 2015 IEEE Congress on Evolutionary Compntation, Sendai, Japan, 2015: 3049-3056. doi: 10.1109/CEC.2015. 7257269. 高維尚, 邵誠, 高琴. 群體智能優(yōu)化中的虛擬碰撞: 雨林算法[J]. 物理學報, 2013, 62(19): 28-43. doi: 10.7498/aps.62. 190202. GAO Weishang, SHAO Cheng, and GAO Qin. Pseudo- collision in swarm optimization algorithm and solution: Rain forest algorithm[J]. Acta Physica Sinica, 2013, 62(19): 28-43. doi: 10.7498/aps.62.190202. MININNO E, NERI F, CUPERTINO F, et al. Compact differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 32-54. doi: 10.1109/tevc.2010. 2058120. SABAR N R, AYOB M, KENDALL G, et al. Grammatical evolution hyper-heuristic for combinatorial optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(6): 840-861. doi: 10.1109/TEVC.2013. 2281527. BOUAZIZ S, ALIMI A M, and ABRAHAM A. PSO-based update memory for improved harmony search algorithm to the evolution of FBBFNT parameters[C]. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014: 1951-1958. doi: 10.1109/CEC.2014.6900304. 劉若辰, 賈建, 趙夢玲, 等. 一種免疫記憶動態(tài)克隆策略算法[J]. 控制理論與應用, 2007, 24(5): 777-784. doi: 10.3969/j. issn.1000-8152.2007.05.016. LIU Ruochen, JIA Jian, ZHAO Mengling, et al. An immune memory dynamic clonal strategy algorithm[J]. Control Theory Applications, 2007, 24(5): 777-784. doi: 10.3969/ j.issn.1000-8152.2007.05.016. 朱思峰, 劉芳, 柴爭義, 等. 簡諧振子免疫優(yōu)化算法求解異構無線網(wǎng)絡垂直切換判決問題[J]. 物理學報, 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401. ZHU Sifeng, LIU Fang, CHAI Zhengyi, et al. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network[J]. Acta Physica Sinica, 2012, 61(9): 375-384. doi: 10.7498/aps.61.096401. ZITZLER E and THIELE L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. doi: 10.1109/4235.797969. ZITZLER E, LAUMANNS M, and THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm[C]. Proceedings of the Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems, Athens, Greece, 2001: 19-26. CAI Zixing and WANG Yong. A multiobjective optimization based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675. doi: 10.1109/TEVC.2006.872344. 鄧澤林, 譚冠政, 何锫, 等. 一種基于動態(tài)識別鄰域的免疫網(wǎng)絡分類算法及其性能分析[J]. 電子與信息學報, 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077. DENG Zelin, TAN Guanzheng, HE Pei, et al. A dynamic recognition neighborhood based immune network classification algorithm and its performance analysis[J]. Journal of Electronics Information Technology, 2015, 37(5): 1167-1172. doi: 10.11999/JEIT141077. WANG H, WU Z and RAHANAMAYAN S. Enhancing particle swarm optimization using generalized opposition based learning[J]. Information Sciences, 2011, 181(20): 4699-4714. doi: 10.1016/j.ins.2011.03.016. 喻飛, 李元香, 魏波, 等. 透鏡成像反學習策略在粒子群算法中的應用[J]. 電子學報, 2014, 42(2): 230-235. doi: 10.3969/ j.issn.0372-2112.2014.02.004. YU Fei, LI Yuanxiang, WEI Bo, et al. The application of a novel OBL based on lens imaging principle in PSO[J]. Acta Electronica Sinica, 2014, 42(2): 230-235. doi: 10.3969/j.issn. 0372-2112.2014.02.004. -
計量
- 文章訪問數(shù): 1494
- HTML全文瀏覽量: 131
- PDF下載量: 561
- 被引次數(shù): 0