基于HARQ協(xié)議的多跳中繼網(wǎng)絡(luò)能量效率的跨層優(yōu)化設(shè)計(jì)
doi: 10.11999/JEIT160264 cstr: 32379.14.JEIT160264
-
1.
(國防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院 長沙 410073) ②(海軍工程大學(xué)艦船綜合電力技術(shù)國防科技重點(diǎn)實(shí)驗(yàn)室 武漢 430033)
國家自然科學(xué)基金(61471376)
Cross-layer Optimization Design of Energy Efficiency in HARQ Based Multihop Relay Networks
-
1.
(School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)
-
2.
(National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan 430033, China)
The National Natural Science Foundation of China (61471376)
-
摘要: 該文針對瑞利衰落信道中采用Chase合并混合自動重傳請求(CC-HARQ)協(xié)議的多跳中繼網(wǎng)絡(luò)提出一種基于跨層設(shè)計(jì)的能量效率優(yōu)化策略。為實(shí)現(xiàn)能量效率的最大化,基于對數(shù)域線性閾值的平均誤幀率模型,推導(dǎo)出多跳CC-HARQ系統(tǒng)能量效率的閉合表達(dá)式,進(jìn)而設(shè)計(jì)了最優(yōu)發(fā)送幀長策略和最優(yōu)發(fā)送功率分配方案,其次,針對發(fā)送幀長和發(fā)送功率分析了兩者的聯(lián)合優(yōu)化方案。仿真結(jié)果驗(yàn)證了理論分析的正確性和可行性,仿真對比實(shí)驗(yàn)表明所提跨層優(yōu)化設(shè)計(jì)方案可以有效提升實(shí)際多跳網(wǎng)絡(luò)的能量效率性能。
-
關(guān)鍵詞:
- 跨層設(shè)計(jì) /
- Chase合并混合自動重傳請求 /
- 多跳中繼 /
- 能量效率
Abstract: The cross-layer optimum scheme of Energy Efficiency (EE) for a multihop relay network with Chase- Combining based Hybrid Automatic Repeat reQuest (CC-HARQ) in Rayleigh fading channels is proposed. In order to maximize EE, a closed-form expression of Energy Efficiency in a multihop CC-HARQ system is derived, which is obtained via an average frame error rate model adopting a new log-domain linear threshold method, and then optimal frame length scheme and optimal transmission power allocation method are further designed, towards the frame length and transmission power, a joint optimization metric of those two parameters is considered. Simulation results verify the correctness and feasibility of the analytical solutions, meanwhile, simulation experiments of comparisons show that the proposed cross-layer optimization design is able to improve the EE performance of practical multihop networks. -
KIM S H, LEE S J, and SUNG D K. HARQ rate selection schemes in a multihop relay network with a delay constraint [J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2333-2348. KIM S H and JUNG B C. On the joint power and rate optimization in multihop relay networks with HARQ[C]. 2013 IEEE 24th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, 2013: 1406-1410. KIM S H and JUNG B C. On the optimal link adaptation in linear relay networks with incremental redundancy HARQ[J]. IEEE Communications Letters, 2014, 18(8): 1411-1414. MANHAS E B, PELLENZ M E, BRANTE G, et al. Energy efficiency analysis of HARQ with chase combining in multi- hop wireless sensor networks[C]. 2014 IEEE Symposium on Computers and Communication (ISCC), Maderia, Sweden, 2014: 1-6. CUI S, GOLDAMITH A J, and BAHAI A. Energy- constrained modulation optimization[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2349-2360. COSTA F M and OCHIAI H. Energy-efficient physical layer design for wireless sensor network links[C]. 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011: 1-5. YE W, HEIDAMANN J, and ESTRIN D. Medium access control with coordinated adaptive sleeping for wireless sensor networks[J]. IEEE/ACM Transactions on Networking, 2004, 12(3): 493-506. El GAMAL A, NAIR C, PRABHAKAR B, et al. Energy- efficient scheduling of packet transmissions over wireless networks[C]. IEEE Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies Proceedings, INFOCOM 2002, New York, USA, 2002: 1773-1782. SANKARASUBRAMANIAM Y, AKYILDIZ I F, and MCHUGHLIN S W. Energy efficiency based packet size optimization in wireless sensor networks[C]. Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, 2003: 1-8. CHAITANYA T V and LE-NGOC T. Adaptive power allocation for chase combining HARQ based low-complexity MIMO systems[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 2015: 771-776. RAMIS J and FEMENIAS G. Cross-layer design of adaptive multirate wireless networks using truncated HARQ[J]. IEEE Transactions on Vehicular Technology, 2011, 60(3): 944-954. WANG Gang, WU Jingxian, and ZHENG Y R. Cross-layer design of energy efficient coded ARQ systems[C]. 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 2012: 2351-2355. LIU S, WU X, XI Y, et al. On the throughput and optimal packet length of an uncoded ARQ system over slow Rayleigh fading channels[J]. IEEE Communications Letters, 2012, 16(8): 1173-1175. WU Jingxian, WANG Gang, and ZHENG Y R. Energy efficiency and spectral efficiency tradeoff in type-I ARQ systems[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(2): 356-366. GE Songhu, XI Yong, ZHAO Haitao, et al. Energy efficient optimization for CC-HARQ over block Rayleigh fading channels[J]. IEEE Communications Letters, 2015, 19(10): 1854-1857. XI Yong, ALISTER B, WEI Jibo, et al. A general upper bound to evaluate packet error rate over quasi-static fading channels[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1373-1377. CHATZIGEORGIOU I, WASSELL I J, and CARRASCO R. On the frame error rate of transmission schemes on quasi-static fading channels[C]. 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 2008: 577-581. FRANCOIS C B and ABDELILAH M. Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2[J]. IEEE Transactions on Signal Processing, 2002, 50(9): 2160-2165. -
計(jì)量
- 文章訪問數(shù): 1674
- HTML全文瀏覽量: 120
- PDF下載量: 408
- 被引次數(shù): 0