一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

一種面向多屬性不確定數(shù)據(jù)流的模體發(fā)現(xiàn)算法

王菊 劉付顯

王菊, 劉付顯. 一種面向多屬性不確定數(shù)據(jù)流的模體發(fā)現(xiàn)算法[J]. 電子與信息學報, 2017, 39(1): 159-166. doi: 10.11999/JEIT160247
引用本文: 王菊, 劉付顯. 一種面向多屬性不確定數(shù)據(jù)流的模體發(fā)現(xiàn)算法[J]. 電子與信息學報, 2017, 39(1): 159-166. doi: 10.11999/JEIT160247
WANG Ju, LIU Fuxian. Motif Discovery Algorithm for Multiple Attributes Uncertain Data Stream[J]. Journal of Electronics & Information Technology, 2017, 39(1): 159-166. doi: 10.11999/JEIT160247
Citation: WANG Ju, LIU Fuxian. Motif Discovery Algorithm for Multiple Attributes Uncertain Data Stream[J]. Journal of Electronics & Information Technology, 2017, 39(1): 159-166. doi: 10.11999/JEIT160247

一種面向多屬性不確定數(shù)據(jù)流的模體發(fā)現(xiàn)算法

doi: 10.11999/JEIT160247 cstr: 32379.14.JEIT160247
基金項目: 

國家自然科學基金(61272011)

Motif Discovery Algorithm for Multiple Attributes Uncertain Data Stream

Funds: 

The National Natural Science Foundation of China (61272011)

  • 摘要: 該文針對多屬性不確定數(shù)據(jù)流的頻繁模式發(fā)現(xiàn)問題,借鑒生物信息學中的模體發(fā)現(xiàn)思想,提出了一種基于MEME(Multiple Expectation-maximization for Motif Elicitation)的多屬性不確定數(shù)據(jù)流模體發(fā)現(xiàn)算法。該算法根據(jù)不確定數(shù)據(jù)流的特點,設(shè)計了基于混合型模型的不確定滑動窗口更新計算方法,改進了SAX(Symbolic Aggregate approXimation)的符號化策略,提出了不同滑動窗口下多屬性模體的相似性分析方法。在實驗當中,用防空反導情報傳感器網(wǎng)絡(luò)中的一組不確定數(shù)據(jù)流驗證了其功能,通過植入不同數(shù)目的模體測試了其發(fā)現(xiàn)準確率,并在元組有效概率設(shè)置為1的條件下與已有算法進行了比較,結(jié)果表明:該算法可以較準確地發(fā)現(xiàn)多屬性不確定數(shù)據(jù)流中的頻繁模式。
  • LEUNG C K S, JIANG F, and HAYDUK Y. A landmark- model based system for mining frequent patterns from uncertain data streams[C]. 2011 International Database Engineering and Applications Symposium, Lisbon, Portugal, 2011: 249-250. doi: 10.1145/2076623.2076659.
    CHUI C K and KAO B. A decremental approach for mining frequent itemsets from uncertain data[C]. 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Osaka, Japan, 2008: 64-75. doi: 10.1007/978-3-540-68125.
    LEUNG C K S, HAO B, and BRAJCZUK D A. Mining uncertain data for frequent itemsets that satisfy aggregate constraints[C]. 25th Annual ACM Symposium on Applied Computing, Sierre, Switzerland, 2010: 1034-1038. doi: 10.1145/1774088.1774305.
    LEUNG C K S and HAO B. Mining of frequent items from streams of uncertain data[C]. 25th IEEE International Conference on Data Engineering, Piscataway, NJ, USA, 2009: 1663-1670. doi: 10.1109/ICDE.2009.157.
    湯克明. 不確定數(shù)據(jù)流中頻繁數(shù)據(jù)挖掘[D]. [博士論文], 南京航空航天大學, 2012.
    TANG Keming. Study on frequent data mining from uncertain data streams[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2012.
    HEWANADUNGODAGE C, YUNI X, and LEE J J. Hyper-structure mining of frequent patterns in uncertain data streams[J]. Knowledge and Information Systems, 2013, 37: 219-244. doi: 10.1007/s10115-012-0581-y.
    LEUNG C K S, CUZZOCREA A, FAN J, et al. Discovering frequent patterns from uncertain data streams with time-fading and landmark models[J]. Transactions on Large-Scale Data and Knowledge-Centered Systems VIII, 2013: 174-196. doi: 10.1007/978-3-642-37574-3_8.
    朱躍龍, 彭力, 李士進, 等. 水文時間序列模體挖掘[J]. 水利學報, 2012, 43(12): 1422-1430.
    ZHU Yuelong, PENG Li, LI Shijin, et al. Research on hydrological time series mining [J]. Journal of Hydraulic Engineering, 2012, 43(12): 1422-1430.
    張懿璞. 轉(zhuǎn)錄因子結(jié)合位點識別問題的算法研究[D]. [博士論文], 西安電子科技大學, 2014.
    ZHANG Yipu. Algorithm research on the problem of transcription factor binging sites identification[D]. [Ph.D. dissertation], Xidian University, 2014.
    楊矯云. 大規(guī)模生物序列分析的高性能算法和模型[D]. [博士論文], 中國科學技術(shù)大學, 2014.
    YANG Jiaoyun. High performance algorithms and models for large-scale biological sequence analysis[D]. [Ph.D. dissertation], University of Science and Technology of China, 2014.
    LIN J, KEOGH E, PATEL P, et al. Finding motifs in time series[C]. Proceedings of the 2nd Workshop on Temporal Data Mining at KDD, District of Colombia, USA, 2002: 53-68.
    CHIU B, KEOGH E, and LONARDI S. Probabilistic discovery of time series motifs[C]. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, District of Colombia, USA, 2003: 493-498. doi: 10.1145/956750.956808.
    FERREIRA P G, AZEVEDO P J, SILVA C G, et al. Mining approximate motifs in time series[C]. 9th international conference on Discovery Science, Berlin, Germany, 2006: 89-101 .
    MUEEN A, KEOGH E, ZHU Q, et al. Exact discovery of time series motif[C]. 9th SIAM International Conference on Data Mining 2009, Nevada, USA, 2009: 469-480.
    ABDULLAH M and NIKAN C. Enumeration of time series motifs of all lengths[J]. Knowledge and Information Systems, 2015, 45: 105-132. doi: 10.1007/s10115-014-0793-4.
    張懿璞, 霍紅衛(wèi), 于強, 等. 用于轉(zhuǎn)錄因子結(jié)合位點識別的定位投影求精算法[J]. 計算機學報, 2013, 36(12): 2545-2559. doi: 10.3724/SP.J.1016.2013.02545.
    ZHANG Yipu, HUO Hongwei, YU Q, et al. A novel fixed- position projection refinement algorithm for TFBS Identification[J]. Chinese Journal of Computers, 2013, 36(12): 2545-2559. doi: 10.3724/SP.J.1016.2013.02545.
    TIMOTHY L B. DREME: motif discovery in transcription factor ChIP-seq data[J]. Original Paper, 2011, 17(12): 1653-1659. doi: 10.1093/bioinformatics/btr261.
    DANIEL Q and XIE Xiaohui. EXTREME: an online EM algorithm for motif discovery[J]. Original Paper, 2014, 30(12): 1667-1673. doi: 10.1093/bioinformatics/btu093.
    THANH T L T, PENG Liping, DIAO Yanlei, et al. CLARO: modeling and processing uncertain data streams[J]. The VLDB Journal, 2012, 21: 651676. doi: 10.1007/s00778- 011-0261-7.
    ARCHAMBEAU C and VERLEYSEN M. Manifold constrained finite Gaussian mixtures [C]. 8th International Work Conference on Artificial Neural Networks, Berlin, Germany, 2005: 820828.
    MICHELE D. Modeling and querying data series and data streams with uncertainty[D]. [Ph.D. dissertation], University of Trento, 2014.
    HONG Y. On computing the distribution function for the sum of independent and non-identical random indicators [R]. Technical Report, Department of Statistics, Virginia Tech, 2011.
    曲文龍, 張克君, 楊炳儒, 等. 基于奇異事件特征聚類的時間序列符號化方法[J]. 系統(tǒng)工程與電子技術(shù), 2006, 28(8): 11311134.
    QU Wenlong, ZHANG Kejun, YANG Bingru, et al. Time series symbolization based on singular event feature clustering[J]. Systems Engineering and Electronics, 2006, 28(8): 11311134.
    JESSICA L, EAMONN K, LI W, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Minning and Knowledge Discovery, 2007, 15: 107144. doi: 10.1007/ s10618-007- 0064-z.
  • 加載中
計量
  • 文章訪問數(shù):  1362
  • HTML全文瀏覽量:  136
  • PDF下載量:  498
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-08-16
  • 刊出日期:  2017-01-19

目錄

    /

    返回文章
    返回