基于Parzen窗的水下無線傳感器網(wǎng)絡(luò)目標(biāo)定位方法
doi: 10.11999/JEIT160246 cstr: 32379.14.JEIT160246
-
1.
(西北工業(yè)大學(xué)航海學(xué)院 西安 710072) ②(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077)
國(guó)家自然科學(xué)基金(61531015, 61501374, 61401499),國(guó)家重點(diǎn)實(shí)驗(yàn)室基金(9140C230310150C23102)
Target Localization Method Based on Parzen Window in Underwater Wireless Sensor Network
-
1.
(School of Marine Science and Technology, Northwestern Polytechnical University, Xi&rsquo
-
2.
(School of Marine Science and Technology, Northwestern Polytechnical University, Xi&rsquo
The National Natural Science Foundation of China (61531015, 61501374, 61401499), The National Laboratory Foundation of China (9140C230310150C23102)
-
摘要: 水聲通道復(fù)雜多變,使得水下無線傳感器網(wǎng)絡(luò)中節(jié)點(diǎn)出現(xiàn)失效的情況,影響了多節(jié)點(diǎn)的目標(biāo)定位性能。為解決這一問題,該文提出一種基于Parzen窗的方位交線定位方法。該方法利用Parzen窗分析所有交點(diǎn)的分布特征,估計(jì)目標(biāo)可能出現(xiàn)在某個(gè)位置的概率,將概率最大值對(duì)應(yīng)的點(diǎn)作為目標(biāo)的估計(jì)位置。由于概率分布是非線性、多峰值的,采用帶有慣性權(quán)重的粒子群算法去求解。仿真實(shí)驗(yàn)結(jié)果表明,所提方法能夠在節(jié)點(diǎn)失效的情況下獲得較高的目標(biāo)定位性能,具有較好的魯棒性。
-
關(guān)鍵詞:
- 水下無線傳感器網(wǎng)絡(luò) /
- 目標(biāo)定位 /
- 方位交線方法 /
- Parzen窗
Abstract: In Underwater Wireless Sensor Network (UWSN) the accuracy of target localization suffers from invalid anchors. To reduce the impact, an improved cross-bearing localization method is proposed based on the Parzen window. In this method, the probability of target location is estimated by the Parzen window according to the distribution characteristics of all intersection points, and the target location is selected as the point corresponding to the maximum value of probability. Because of the nonlinear and multi-peak features of the probability distribution, the standard particle swarm optimization method is adopted to solve the problem. Simulations indicate that the proposed method avoids effectively the influence of the invalid anchors on the performance of localization, and has better accuracy and robustness compared with other cross-bearing localization methods in the complex underwater environment. -
HSC C C, LIU H H, GOMEZ J L G, et al. Delay-sensitive opportunistic routing for underwater sensor networks[J]. IEEE Sensors Journal, 2015, 15(11): 6584-6591. doi: 10.1109/JSEN.2015.2461652. BOSSE J, KRASNOV O, and YAROVOY A. Direct target localization and deghosting in active radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3139-3150. doi: 10.1109/TAES.2015.140170. VANDER Hook J, TOKEKAR P, and ISLER V. Algorithms for cooperative active localization of static targets with mobile bearing sensors under communication constraints[J]. IEEE Transactions on Robotics, 2015, 31(4): 864-876. doi: 10.1109/TRO.2015.2432612. NOROOZI A and SEBT M A. Target localization from bistatic range measurements in multi-transmitter multi- receiver passive radar[J]. IEEE Signal Processing Letters, 2015, 22(12): 2445-2449. doi: 10.1109/LSP.2015.2491961. HE Y, BEHNAD A, and WANG X. Accuracy analysis of the two-reference-node angle-of-arrival localization system[J]. IEEE Wireless Communications Letters, 2015, 4(3): 329-332. doi: 10.1109/LWC.2015.2415788. POURSHEIKHLI S and ZAMIRI-JAFARIAN H. TDOA based target localization in inhomogenous underwater wireless sensor network[C]. International Conference on Computer and Knowledge Engineering, Mashhad, Islamic Republic of Iran, 2015: 1-6. doi: 10.1109/ICCKE.2015. 7365873. TOMIC S, BEKO M, DINIS R, et al. Efficient estimator for distributed RSS-based localization in wireless sensor networks[C]. IEEE Wireless Communications and Mobile Computing Conference, Dubrovnik, Croatia, 2015: 1266-12751. doi: 10.1109/IWCMC.2015.7289264. CHO H and KWON Y. RSS-based indoor localization with PDR location tracking for wireless sensor networks[J]. AEU-International Journal of Electronics and Communications, 2016, 70(3): 250-256. doi: 10.1016/j.aeue. 2015.12.004. XU J, MA M, and LAW C L. Cooperative angle-of-arrival position localization[J]. Measurement, 2015, 59(1): 302-313. doi: 10.1016/j.measurement.2014.09.023. FARMANI M, PEDERSEN M S, TAN Z H, et al. Maximum likelihood approach to informed sound source localization for hearing aid applications[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 2015: 16-20. doi: 10.1109/ICASSP.2015.7177923. 王燊燊, 馮金富, 王方年, 等. 基于約束最小二乘的近空間雷達(dá)網(wǎng)定位算法[J]. 電子與信息學(xué)報(bào), 2011, 33(7): 1655-1660. doi: 10.3724/SP.J.1146.2010.01211. WANG Shenshen, FENG Jinfu, WANG Fangnian, et al. Location method of near space radar network based on regularized constrained total least square[J]. Journal of Electronics Information Technology, 2011, 33(7): 1655-1660. doi: 10.3724/SP.J.1146.2010.01211. KUlakowski P, VALES-ALONSO J, EGEA-LOPEZ E, et al. Angle-of-arrival localization based on antenna arrays for wireless sensor networks[J]. Computers Electrical Engineering, 2010, 36(6): 1181-1186. doi: 10.1016/j. compeleceng.2010.03.007. 何友, 王本才, 王國(guó)宏, 等. 被動(dòng)傳感器組網(wǎng)變門限聚類定位算法[J]. 宇航學(xué)報(bào), 2010, 31(4): 1125-1130. doi: 10.3873/ j.issn.1000-1328.2010.04.030. HE You, WANG Bencai, WANG Guohong, et al. A clustering localization algorithm with adaptive threshold in passive sensor network[J]. Journal of Astronautics, 2010, 31(4): 1125-1130. doi: 10.3873/j.issn.1000-1328.2010.04.030. 胡來招. 定位概率計(jì)算在多目標(biāo)環(huán)境下的應(yīng)用[J]. 電子對(duì)抗技術(shù), 2002, 17(1): 14-18. doi: 10.3969/j.issn.1674-2230.2002. 01.003. HU Laizhao. Application of passive locating algorithm based on probability in multi-target environment[J]. Electronic Countermeasure Technology, 2002, 17(1): 14-18. doi: 10.3969 /j.issn.1674-2230.2002.01.003. 譚坤, 陳紅, 蔡曉霞, 等. 基于概率計(jì)算的虛假點(diǎn)消除算法研究[J]. 電子信息對(duì)抗技術(shù), 2009, 24(5): 29-32. doi: 10.3969/ j.issn.1674-2230.2009.05.007. TAN Kun, CHEN Hong, CAI Xiaoxia, et al. Ghost eliminating algorithm based on probability[J]. Electronic Information Warfare Technology, 2009, 24(5): 29-32. doi: 10.3969/j.issn.1674-2230.2009.05.007. 劉晗, 張慶, 孟理華, 等. 基于Parzen窗估計(jì)的設(shè)備狀態(tài)綜合報(bào)警方法[J]. 振動(dòng)與沖擊, 2013, 32(3): 110-114. doi: 10.3969 /j.issn.1000-3835.2013.03.022. LIU Han, ZHANG Qing, MENG Lihua, et al. Comprehensive alarm method for equipment conditions based on Parzen window estimation[J]. Journal of Vibration and Shock, 2013, 32(3): 110-114. doi: 10.3969/j.issn.1000-3835.2013.03.022. PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076. doi: 10.1214/aoms/1177704472. MUSSA H Y, MITCHELL J B O, and AFZAL A M. The Parzen window method: In terms of two vectors and one matrix[J]. Pattern Recognition Letters, 2015, 63: 30-35. doi: 10.1016/j.patrec.2015.06.002. 干曉蓉. 模式識(shí)別[M]. 昆明: 云南人民出版社, 2006: 43-47. GAN Xiaorong. Pattern Recognition[M]. Kunming: Yunnan Peoples Publishing House, 2006: 43-47. 李麗, 牛奔. 粒子群優(yōu)化算法[M]. 北京: 冶金工業(yè)出版社, 2009: 25-33. LI Li and NIU Ben. Particle Swarm Optimization[M]. Beijing: Metallurgical Industry Press, 2009: 25-33. EBERHART R C and KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995: 39-43. doi: 10.1109/MHS.1995. 494215. SHI Y and EBERHART R C. A modified particle swarm optimizer[C]. IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 1998: 69-73. doi: 10.1109/ ICEC.1998.699146. -
計(jì)量
- 文章訪問數(shù): 1527
- HTML全文瀏覽量: 166
- PDF下載量: 369
- 被引次數(shù): 0