一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于跨領(lǐng)域卷積稀疏自動(dòng)編碼器的抽象圖像情緒性分類

樊養(yǎng)余 李祖賀 王鳳琴 馬江濤

樊養(yǎng)余, 李祖賀, 王鳳琴, 馬江濤. 基于跨領(lǐng)域卷積稀疏自動(dòng)編碼器的抽象圖像情緒性分類[J]. 電子與信息學(xué)報(bào), 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
引用本文: 樊養(yǎng)余, 李祖賀, 王鳳琴, 馬江濤. 基于跨領(lǐng)域卷積稀疏自動(dòng)編碼器的抽象圖像情緒性分類[J]. 電子與信息學(xué)報(bào), 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
FAN Yangyu, LI Zuhe, WANG Fengqin, MA Jiangtao. Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains[J]. Journal of Electronics & Information Technology, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241
Citation: FAN Yangyu, LI Zuhe, WANG Fengqin, MA Jiangtao. Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains[J]. Journal of Electronics & Information Technology, 2017, 39(1): 167-175. doi: 10.11999/JEIT160241

基于跨領(lǐng)域卷積稀疏自動(dòng)編碼器的抽象圖像情緒性分類

doi: 10.11999/JEIT160241 cstr: 32379.14.JEIT160241
基金項(xiàng)目: 

陜西省科技統(tǒng)籌創(chuàng)新工程重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2013 SZS15-K02)

Affective Abstract Image Classification Based on Convolutional Sparse Autoencoders across Different Domains

Funds: 

The Science and Technology Innovation Engineering Program for Shaanxi Key Laboratories (2013SZS15-K02)

  • 摘要: 為了將無監(jiān)督特征學(xué)習(xí)應(yīng)用于小樣本量的圖像情緒語義分析,該文采用一種基于卷積稀疏自動(dòng)編碼器進(jìn)行自學(xué)習(xí)的領(lǐng)域適應(yīng)方法對(duì)少量有標(biāo)記抽象圖像進(jìn)行情緒性分類。并且提出了一種采用平均梯度準(zhǔn)則對(duì)自動(dòng)編碼器所學(xué)權(quán)重進(jìn)行排序的方法,用于對(duì)基于不同領(lǐng)域的特征學(xué)習(xí)結(jié)果進(jìn)行直觀比較。首先在源領(lǐng)域中的大量無標(biāo)記圖像上隨機(jī)采集圖像子塊并利用稀疏自動(dòng)編碼器學(xué)習(xí)局部特征,然后將對(duì)應(yīng)不同特征的權(quán)重矩陣按照每個(gè)矩陣在3個(gè)色彩通道上的平均梯度中的最小值進(jìn)行排序。最后采用包含池化層的卷積神經(jīng)網(wǎng)絡(luò)提取目標(biāo)領(lǐng)域有標(biāo)記圖像樣本的全局特征響應(yīng),并送入邏輯回歸模型進(jìn)行情緒性分類。實(shí)驗(yàn)結(jié)果表明基于自學(xué)習(xí)的領(lǐng)域適應(yīng)可以為無監(jiān)督特征學(xué)習(xí)在有限樣本目標(biāo)領(lǐng)域上的應(yīng)用提供訓(xùn)練數(shù)據(jù),而且采用稀疏自動(dòng)編碼器的跨領(lǐng)域特征學(xué)習(xí)能在有限數(shù)量抽象圖像情緒語義分析中獲得比底層視覺特征更優(yōu)秀的辨識(shí)效果。
  • BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]. 21st ACM International Conference on Multimedia, Barcelona, Spain, 2013: 223-232. doi: 10.1145/2502081.2502282.
    李祖賀, 樊養(yǎng)余. 基于視覺的情感分析研究綜述[J]. 計(jì)算機(jī)應(yīng)用研究, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001- 3695.2015.12.001.
    LI Zuhe and FAN Yangyu. Survey on visual sentiment analysis[J]. Application Research of Computers, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001-3695.2015.12.001.
    MACHAJDIK J and HANBURY A. Affective image classification using features inspired by psychology and art theory[C]. 18th ACM International Conference on Multimedia, Firenze, Italy, 2010: 83-92. doi: 10.1145/ 1873951.1873965.
    ZHANG H, G?NEN M, YANG Z, et al. Understanding emotional impact of images using Bayesian multiple kernel learning[J]. Neurocomputing, 2015, 165: 3-13. doi: 10.1016/ j.neucom.2014.10.093.
    ZHAO S, GAO Y, JIANG X, et al. Exploring principles-of-art features for image emotion recognition[C]. 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 2014: 47-56. doi: 10.1145/2647868.2654930.
    ZHANG H, YANG Z, G?NEN M, et al. Affective abstract image classification and retrieval using multiple kernel learning[C]. 20th International Conference on Neural Information Processing, Daegu, South Korea, 2013: 166-175. doi: 10.1007/978-3-642-42051-1_22.
    ZHANG H, AUGILIUS E, HONKELA T, et al. Analyzing emotional semantics of abstract art using low-level image features[C]. 10th International Symposium on Intelligent Data Analysis, Porto, Portugal, 2011: 413-423. doi: 10.1007/ 978-3-642-24800-9_38.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
    李寰宇, 畢篤彥, 查宇飛, 等. 一種易于初始化的類卷積神經(jīng)網(wǎng)絡(luò)視覺跟蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 1-7. doi: 10.11999/JEIT150600.
    LI Huanyu, BI Duyan, ZHA Yufei, et al. An easily initialized visual tracking algorithm based on similar structure for convolutional neural network[J]. Journal of Electronics Information Technology, 2016, 38(1): 1-7. doi: 10.11999/ JEIT150600.
    YOU Q, LUO J, JIN H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]. 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, 2015: 381-388.
    李祖賀, 樊養(yǎng)余, 王鳳琴. YUV空間中基于稀疏自動(dòng)編碼器的無監(jiān)督特征學(xué)習(xí)[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
    LI Zuhe, FAN Yangyu, and WANG Fengqin. Unsupervised feature learning with sparse autoencoders in YUV space[J]. Journal of Electronics Information Technology, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
    ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184. doi: 10.1109/TGRS.2014.2357078.
    楊興明, 吳克偉, 孫永宣, 等. 可遷移測(cè)度準(zhǔn)則下的協(xié)變量偏移修正多源集成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
    YANG Xingming, WU Kewei, SUN Yongxuan, et al. Modified covariate-shift multi-source ensemble method in transferability metric[J]. Journal of Electronics Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
    莊福振, 羅平, 何清, 等. 遷移學(xué)習(xí)研究進(jìn)展[J]. 軟件學(xué)報(bào), 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
    ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
    DENG J, ZHANG Z, EYBEN F, et al. Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072. doi: 10.1109/LSP.2014.2324759.
    YANG X, ZHANG T, and XU C. Cross-domain feature learning in multimedia [J]. IEEE Transactions on Multimedia, 2015, 17(1): 64-78. doi: 10.1109/TMM.2014.2375793.
    ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. 28th AAAI Conference on Artificial Intelligence (AAAI), Quebec City, QC, Canada, 2014: 2213-2219.
    KOUNO K, SHINNOU H, SASAKI M, et al. Unsupervised domain adaptation for word sense disambiguation using stacked denoising autoencoder[C]. 29th Pacific Asia Conference on Language, Information and Computation (PACLIC 29), Shanghai, China, 2015: 224-231.
    COATES A, LEE H, and NG A Y. An analysis of single-layer networks in unsupervised feature learning[C]. 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 2011: 215-223.
    WANG R, DU L, YU Z, et al. Infrared and visible images fusion using compressed sensing based on average gradient[C]. 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 2013: 1-4. doi: 10.1109/ICMEW.2013.6618257.
    L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11. doi: 10.1142/S0129065714500348.
    LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11. doi: 10.1186/s13634-015- 0222-1.
    VEDALDI A and LENC K. MatConvNet: convolutional neural networks for matlab[C]. 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689-692. doi: 10.1145/2733373.2807412.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1561
  • HTML全文瀏覽量:  218
  • PDF下載量:  453
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-07-22
  • 刊出日期:  2017-01-19

目錄

    /

    返回文章
    返回