一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

極大平面圖的結(jié)構(gòu)與著色理論(2)多米諾構(gòu)形與擴(kuò)縮運(yùn)算

許進(jìn)

許進(jìn). 極大平面圖的結(jié)構(gòu)與著色理論(2)多米諾構(gòu)形與擴(kuò)縮運(yùn)算[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224
引用本文: 許進(jìn). 極大平面圖的結(jié)構(gòu)與著色理論(2)多米諾構(gòu)形與擴(kuò)縮運(yùn)算[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224
XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224
Citation: XU Jin. Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1271-1327. doi: 10.11999/JEIT160224

極大平面圖的結(jié)構(gòu)與著色理論(2)多米諾構(gòu)形與擴(kuò)縮運(yùn)算

doi: 10.11999/JEIT160224 cstr: 32379.14.JEIT160224
基金項(xiàng)目: 

國(guó)家973規(guī)劃項(xiàng)目(2013CB329600),國(guó)家自然科學(xué)基金(61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

Theory on Structure and Coloring of Maximal Planar Graphs (2) Domino Configurations and Extending-Contracting Operations

Funds: 

The National 973 Program of China (2013CB 329600), The National Natural Science Foundation of China (61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

  • 摘要: 業(yè)已證明四色猜想的數(shù)學(xué)證明可歸結(jié)為刻畫4-色漏斗型偽唯一4-色極大平面圖的特征。為刻畫此類極大平面圖的結(jié)構(gòu)特征,本文提出一種構(gòu)造極大平面圖的方法 擴(kuò)縮運(yùn)算。研究發(fā)現(xiàn):此方法的關(guān)鍵問(wèn)題是需要清楚一種構(gòu)形,稱為多米諾構(gòu)形。文中構(gòu)造性地給出了多米諾構(gòu)形的充要條件;在此基礎(chǔ)上提出并建立了一個(gè)圖的祖先圖與子孫圖理論與構(gòu)造方法。特別證明了:任一最小度4的n(9)-階極大平面圖必含(n-2)-階或(n-3)-階祖先圖;給出極大平面圖的遞推構(gòu)造法,并用此方法構(gòu)造出6~12-階所有最小度的4極大平面圖。擴(kuò)縮運(yùn)算是本系列文章的基石。
  • APPEL K and HAKEN W. The solution of the four-color map problem[J]. Science American, 1977, 237(4): 108-121. doi: 10.1038/scientificamerican1077-108.
    APPEL K and HAKEN W. Every planar map is four colorable, I: Discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490.
    APPEL K, HAKEN W, and KOCH J. Every planar map is four-colorable, II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491-567.
    EBERHARD V. Zur Morphologie Der Polyeder, Mit Vielen Figuren Im Text[M]. Leipzig: Benedictus Gotthelf Teubner, 1891: 14-68.
    王邵文. 構(gòu)造極大平面圖的圈加點(diǎn)法[J]. 北京機(jī)械工業(yè)學(xué)院學(xué)報(bào), 2000, 15(1): 26-29.
    WANG Shaowen. Method of cycle add-point to construct a maximum plate graph[J]. Journal of Beijing Institute of Machinery, 2000, 15(1): 26-29.
    王邵文. 構(gòu)造極大平面圖的三種方法[J]. 北京機(jī)械工業(yè)學(xué)院學(xué)報(bào), 1999, 14(1): 16-22.
    WANG Shaowen. Three methods to construct maximum plain graph[J]. Journal of Beijing Institute of Machinery, 1999, 14(1): 16-22.
    BARNETTE D. On generating planar graphs[J]. Discrete Mathematics, 1974, 7(3-4): 199-208. doi: 10.1016/0012- 365X(74)90035-1.
    BUTLER J W. A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 1974, 26(2): 138-146.
    BATAGELJ V. An inductive definition of the class of all triangulations with no vertex of degree smaller than 5[C]. Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983: 15-24.
    WAGNER K. Bemerkungen zum vierfarbenproblem[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1936, 46: 26-32.
    BRINKMANN G and MCKAY B D. Construction of planar triangulations with minimum degree 5[J]. Discrete Mathematics, 2005, 301: 147-163. doi: 10.1016/j.disc.2005.06. 019.
    MCKAY B D. Isomorph-free exhaustive generation[J]. Journal of Algorithms, 1998, 26(2): 306-324. doi: 10.1006 /jagm.1997.0898.
    AVIS D. Generating rooted triangulations without repetitions[J]. Algorithmica, 1996, 16(6): 618-632.
    NAKANO S. Efficient generation of triconnected plane triangulations[J]. Computational Geometry, 2004, 27(2): 109-122.
    BRINKMANN G and MCKAY B. Fast generation of planar graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2007, 58(58): 323-357.
    NEGAMI S and NAKAMOTO A. Diagonal transformations of graphs on closed surfaces[J]. Science Reports of the Yokohama National University. Section I. Mathematics, Physics, Chemistry, 1994, 40(40): 71-96.
    KOMURO H. The diagonal flips of triangulations on the sphere[J]. Yokohama Mathematical Journal, 1997, 44(2): 115-122.
    MORI R, NAKAMOTO A, and OTA K. Diagonal flips in Hamiltonian triangulations on the sphere[J]. Graphs and Combinatorics, 2003, 19(3): 413-418. doi:?10.1007/s00373- 002-0508-6.
    GAO Z C, URRUTIA J, and WANG J Y. Diagonal flips in labeled planar triangulations[J]. Graphs and Combinatorics, 2004, 17(4): 647-656. doi: ?10.1007/s003730170006.
    BOSE P, JANSENS D, VAN RENSSEN A, et al. Making triangulations 4-connected using flips[C]. Proceedings of the 23rd Canadian Conference on Computational Geometry, Toronto, 2014, 47(2): 187-197 doi: 10.1016/j.comgeo.2012. 10.012.
    許進(jìn). 極大平面圖的結(jié)構(gòu)與著色理論(1): 色多項(xiàng)式遞推公式與四色猜想[J]. 電子與信息學(xué)報(bào), 2016, 38(4): 763-779. doi: 10.11999/JEIT160072.
    XU Jin. Theory on the structure and coloring of maximal planar graphs(1): recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics Information Technology, 2016, 38(4): 763-779. doi: 10.11999/ JEIT160072.
    BONDY J A and MURTY U S R. Graph Theory[M]. Springer, 2008: 5-46.
    XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree- colorable planar graphs[J]. Information Processing Letters, 2016, 116(8): 532-536. doi: 10.1016/j.ipl.2016.03.011.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1939
  • HTML全文瀏覽量:  154
  • PDF下載量:  875
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2016-01-24
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-06-19

目錄

    /

    返回文章
    返回