太赫茲合成孔徑雷達(dá)成像運(yùn)動(dòng)補(bǔ)償算法
doi: 10.11999/JEIT160201 cstr: 32379.14.JEIT160201
-
1.
(中國(guó)科學(xué)院電子學(xué)研究所電磁輻射與探測(cè)技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100190) ②(中國(guó)科學(xué)院大學(xué) 北京 100049)
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(2015AA8125021)
Motion Compensation Imaging Algorithm of TeraHertz Synthetic Aperture Radar
-
1.
(Key Laboratory of Electromagnetic Radiation and Detection Technology, Institute of Electronics,Chinese Academy of Sciences, Beijing 100190, China)
The National High Technology Research and Development Program of China (2015AA8125021)
-
摘要: 合成孔徑雷達(dá)(SAR)成像理論分析和工程經(jīng)驗(yàn)表明當(dāng)雷達(dá)平臺(tái)的運(yùn)動(dòng)誤差幅度達(dá)到亞波長(zhǎng)量級(jí)時(shí),會(huì)影響圖像的聚焦質(zhì)量。相對(duì)傳統(tǒng)微波SAR,太赫茲合成孔徑雷達(dá)(THz-SAR)工作在波長(zhǎng)更短的太赫茲頻段,對(duì)搭載雷達(dá)平臺(tái)的穩(wěn)定性要求更苛刻,需要達(dá)到微米級(jí)的控制和測(cè)量精度,目前的平臺(tái)控制和測(cè)量技術(shù)還不能滿足要求。該文提出一種基于回波數(shù)據(jù)的THz-SAR成像運(yùn)動(dòng)補(bǔ)償算法,通過慣性測(cè)量單元輸出的姿態(tài)信息完成由運(yùn)動(dòng)誤差引起的距離徙動(dòng)的校正,結(jié)合天線方向圖和粗聚焦圖像中特顯點(diǎn)的最大幅值估計(jì)最優(yōu)位置并構(gòu)建理想回波。利用實(shí)際回波和理想回波數(shù)據(jù)提取由平臺(tái)運(yùn)動(dòng)誤差引起回波的相位誤差并進(jìn)行補(bǔ)償,有效地實(shí)現(xiàn)了THz-SAR高分辨率成像。采用中心頻率0.2 THz的SAR系統(tǒng)進(jìn)行室外車載實(shí)驗(yàn),對(duì)目標(biāo)進(jìn)行2維高分辨成像,得到角反射器和金屬條的SAR圖像。實(shí)驗(yàn)結(jié)果驗(yàn)證了所提運(yùn)動(dòng)補(bǔ)償算法的正確性和有效性。
-
關(guān)鍵詞:
- 太赫茲合成孔徑雷達(dá) /
- 太赫茲成像 /
- 運(yùn)動(dòng)補(bǔ)償算法 /
- 平動(dòng)誤差
Abstract: Theoretical analysis and engineering experience of SAR imaging shows that radar platforms motion error will affect the quality of the image if its amplitude is greater than sub wavelength. Compared with traditional SAR working in microwave frequency band, TeraHertz SAR (THz-SAR) works in a shorter wavelength as the TeraHertz band, the control and measure accuracy of radar platforms motion should be micron dimension, but the current technology can not meet the requirements. A novel motion compensation algorithm for THz-SAR imaging based on echo data is proposed in this paper. The attitude information from the inertial measurement unit is used to calibrate the migration error caused by the motion. Firstly, an obvious point like object is found in the coarse focusing image and the optimal position of this point is estimated by combining the antenna pattern and the maximum echos amplitude. Then the ideal echo of this point object is generated using the above estimated position and the phase error caused by the motion error of the platform is extracted by comparing the actual echo and the ideal echo. The extracted phase error is used to compensate the motion error of platform. The SAR system with center frequency 0.2 THz is used to carry out the outdoor vehicle experiment. Two dimensional high resolutions of SAR images of the corner reflectors and the metal strips are achieved. The validity of the proposed motion compensation algorithm is proved by experimental results. -
張存林, 張巖, 等. 太赫茲感測(cè)與成像[M]. 北京: 國(guó)防工業(yè)出版社, 2008: 160-164. ZHANG Cunlin, ZHANG Yan, et al. Terahertz Sensing and Imaging[M]. Beijing: National Defense Industry Press, 2008: 160-164. 徐政五. 基于太赫茲雷達(dá)的人體心跳和微動(dòng)特征檢測(cè)方法研究[D]. [博士論文], 電子科技大學(xué), 2014. XU Zhengwu. The human heartbeat and micro-feature detection based on the THz radar[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2014. WAHAIA F, KASALYNAS I, VENCKEVICIUS R, et al. Terahertz absorption and reflection imaging of carcinoma- affected colon tissues embedded in paraffin[J]. Journal of Molecular Structure, 2015, 1107: 214-219. doi: 10.1016/j. molstruc.2015.11.048. BOWMAN T C, El-SHENAWEE M, and CAMPBELL L K. Terahertz imaging of excised breast tumor tissue on paraffin sections[J]. IEEE Transactions on Antennas Propagation, 2015, 63(5): 2088-2097. doi: 10.1109/TAP.2015.2406893. ANDERSON J P, SHAPIRO M A, TEMKIN R J, et al. Studies of the 1.5-MW 110-GHz gyrotron experiment[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 877-883. doi: 10.1109/TPS.2004.828813. TOUSI Y and AFSHARI E. A high-power and scalable 2-D phased array for terahertz CMOS integrated systems[J]. IEEE Journal of Solid-State Circuits, 2015, 50(2): 597-609. doi: 10.1109/JSSC.2014.2375324. PHILIPP M, GRAF U U, WAGNER-GENTNER A, et al. Compact 1.9 THz BWO local-oscillator for the GREAT heterodyne receiver[J]. Infrared Physics Technology, 2007, 51(1): 54-59. doi: 10.1016/j.infrared.2006.10.034. VENDIK I B, VENDIK O G, ODIT M A, et al. Tunable metamaterials for controlling THz radiation[J]. IEEE Transactions on Terahertz Science Technology, 2012, 2(5): 538-549. doi: 10.1109/TTHZ.2012.2209878. GOYETTE T M, DICKINSON J C, WALDMAN J, et al. A 1.56 THz compact radar range for W-Band imagery of scale-model tactical targets[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4053: 615-622. doi: 10.1117/12.396372. DENGLER R J, COOPER K B, CHATTOPADHYAY G, et al. 600 GHz imaging radar with 2 cm range resolution[C]. IEEE MTT-S International Microwave Symposium, Honolulu, Hawaii, USA, 2007: 1371-1374. doi: 10.1109/ MWSYM.2007.380468. GILL J, LEE C, CHATTOPADHYAY G, et al. Array technology for terahertz imaging[C]. Passive and Active Millimeter-Wave Imaging XV, Baltimore, Maryland, USA, 2012: 836202. doi: 10.1117/12.920497. 成彬彬, 江舸, 陳鵬, 等. 0.67 THz高分辨力成像雷達(dá)[J]. 太赫茲科學(xué)與電子信息學(xué)報(bào), 2013, 11(1): 7-11. CHENG Binbin, JIANG Ge, CHEN Peng, et al. 0.67 THz high resolution imaging radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 7-11. doi: 10.3788/HPLPB20132506.1577. GU S, LI C, GAO X, et al. Three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beam-theory and experiment[J]. IEEE Transactions on Geoscience Remote Sensing, 2013, 51(4): 2241-2249. doi: 10.1109/TGRS.2012.2209892. 蔡英武, 楊陳, 曾耿華, 等. 太赫茲極高分辨力雷達(dá)成像試驗(yàn)研究[J]. 強(qiáng)激光與粒子束, 2012, 24(1): 7-9. doi: 10.3788/ HPLPB20122401.0007. CAI Yingwu, YANG Chen, ZENG Genghua, et al. Experimental research on high resolution terahertz radar imaging[J]. High Power Laser and Particle Beams, 2012, 24(1): 7-9. doi: 10.3788/HPLPB20122401.0007. 許景周, 張希成. 太赫茲科學(xué)技術(shù)和應(yīng)用[M]. 北京: 北京大學(xué)出版社, 2007: 80-86. XU Jingzhou and ZHANG Xicheng. Terahertz Science Technology and Applications[M]. Beijing: Peking University Press, 2007: 80-86. ZHANG B, PI Y, and LI J. Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing and experiment results[J]. IEEE Sensors Journal, 2015, 15(1): 290-299. doi: 10.1109/JSEN.2014. 2342495. 林華. 無人機(jī)載太赫茲合成孔徑雷達(dá)成像分析與仿真[J]. 信息與電子工程, 2010, 8(4): 373-377. LIN Hua. Analysis and simulation of UAV terahertz wave synthetic aperture radar imaging[J]. Information and Electronic Engineering, 2010, 8(4): 373-377. 趙雨露, 張群英, 李超, 等. 視頻合成孔徑雷達(dá)振動(dòng)誤差分析及補(bǔ)償方案研究[J]. 雷達(dá)學(xué)報(bào), 2015, 4(2): 230-239. doi: 10. 12000/JR14153. ZHAO Yulu, ZHANG Qunying, LI Chao, et al. Vibration error analysis and motion compensation of video synthetic aperture radar[J]. Journal of Radars, 2015, 4(2): 230-239. doi: 10.12000 /JR14153. 安道祥. 高分辨SAR成像處理研究[D]. [博士論文], 國(guó)防科學(xué)技術(shù)大學(xué)研究生院, 2011. AN Daoxiang. Study on the imaging techniques for high resolution SAR systems[D]. [Ph.D. dissertation], Graduate School of National University of Defense Technology, 2011. -
計(jì)量
- 文章訪問數(shù): 1658
- HTML全文瀏覽量: 171
- PDF下載量: 665
- 被引次數(shù): 0