基于生理特征的乳腺X線圖像多視圖分析坐標(biāo)系
doi: 10.11999/JEIT160193 cstr: 32379.14.JEIT160193
-
1.
(北京交通大學(xué)電子信息工程學(xué)院 北京 100044) ②(北京大學(xué)人民醫(yī)院乳腺中心 北京 100044)
國家自然科學(xué)基金(61271305),北京市科技計(jì)劃課題(D151100000415002),中央高校基本科研業(yè)務(wù)費(fèi)(2015JBM015)
Physiological Features Based Coordinate System for Multi-view Analysis in Mammograms
-
1.
(School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China)
-
2.
(Breast Center of Peking University People,s Hospital, Beijing 100044, China)
The National Natural Science Foundation of China (61271305), Beijing Municipal Science and Technology Project (D151100000415002), The Fundamental Research Funds for the Central Universities (2015JBM015)
-
摘要: 該文針對乳腺X線圖像病變的多視圖檢測與分析問題,建立了一種基于乳房生理特征的多視圖坐標(biāo)系。通過軸位、中側(cè)斜位視圖圖像中的乳頭、胸肌典型生理特征的提取,以及乳房邊緣的橢圓擬合,建立乳腺X線圖像多視圖分析坐標(biāo)系,可將乳腺X線圖像雙側(cè)四視圖經(jīng)非線性映射至同一坐標(biāo)框架內(nèi)。以北京大學(xué)人民醫(yī)院乳腺中心提供的圖像庫為實(shí)驗(yàn)數(shù)據(jù),從生理特征定位精度、興趣區(qū)域匹配精度等多方面進(jìn)行坐標(biāo)系匹配準(zhǔn)確度的測試與驗(yàn)證,結(jié)果表明該坐標(biāo)系有助于乳腺X線圖像,特別是致密型圖像的多視圖病變檢測。Abstract: A breast coordinate system based on physiological features is developed for multi-view analysis in mammograms. It is constructed according to the locations of nipple, pectoral muscle and the fitted breast boundary. The breast regions in mammograms are mapped into a parameter frame because of the coordinate system. Experiments are implemented on data set of Breast Cancer of Peking University Peoples Hospital. The performance of locating the physiological features and matching the regions of interest is evaluated. Results show that the proposed coordinate system could achieve favorable performance and facilitate the multi-view analysis in mammograms.
-
Key words:
- Mammogram /
- Multi-view analysis /
- Coordinate system /
- Physiological features /
- Region matching
-
ANDERSON B O, YIP C H, SMITH R A, et al. Guideline implementation for breast healthcare in low-income and middle-income countries[J]. Cancer, 2008, 113(S8): 2221-2243. doi: 10.1002/cncr.23844. MASKARINEC G, MENG L, and URSIN G. Ethnic differences in mammographic densities[J]. International Journal of Epidemiology, 2001, 30(5): 959-965. doi: 10.1093 /ije/30.5.959. MENCATTINI A, SALMERI M, and CASTI P. Bilateral asymmetry identification for the early detection of breast cancer[C]. 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA), Bari, Italy, 2011: 613-618. doi: 10.1109/MeMeA.2011.5966746. CASTI P, MENCATTINI A, SALMERI M, et al. Masking procedures and measures of angular similarity for detection of bilateral asymmetry in mammograms[C]. The 4th IEEE International Conference on E-Health and Bioengineering, Iasi, Romania, 2013: 1-4. doi: 10.1109/EHB.2013.6707258. CASTI P, MENCATTINI A, SALMERI M, et al. Analysis of structural similarity in mammograms for detection of bilateral asymmetry[J]. IEEE Transactions on Medical Imaging, 2015, 24(2): 662-671. doi: 10.1109/TMI.2014. 2365436. MAGNA G, JAYARAMAN S V, CASTI P, et al. Adaptive classification model based on artificial immune system for breast cancer detection[C]. 2015 XVIII AISEM Annual Conference, Trento, Italy, 2015: 1-4. doi: 10.1109/AISEM. 2015.7066842. LI Yanfeng, CHEN Houjin, YANG Yongyi, et al. A bilateral analysis scheme for false positive reduction in mammogram mass detection[J]. Computers in Biology and Medicine, 2015, (57): 84-95. doi: 10.1016/j.compbiomed.2014.12.007. KELDER A, ZIGEL Y, LEDERMAN D, et al. A new computer-aided detection scheme based on assessment of local bilateral mammographic feature asymmetry-a preliminary evaluation[C]. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015: 6394-6397. doi: 10.1109/EMBC. 2015.7319856. 王之瓊, 王培, 于戈, 等. 雙側(cè)特征融合的乳腺腫塊檢測[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2015, 27(6): 1024-1031. WANG Zhiqiong, WANG Pei, YU Ge, et al. Breast tumor detection on fusion of bilateral feature[J]. Journal of Computer-Aided Design Computer Graphics, 2015, 27(6): 1024-1031. CAO Lin, CHEN Houjin, LI Jupeng, et al. A coordinate system for multi-view analysis of mammograms[C]. The 6th International Conference on Mechanical and Electronics Engineering, Beijing, China, 2014: 481-487. doi: 10.2495/ ICMIIE140701. BRANDT S S, KAREMORE G, and KARSSEMEIJER N. An anatomically oriented breast coordinate system for mammogram analysis[J]. IEEE Transactions on Medical Imaging, 2011, 30(10): 1841-1851. doi: 10.1109/TMI.2011. 2155082. GEORGSSON F. Anatomical coordinate system for bilateral registration of mammograms[C]. 13th Scandinavian Conference on Image Analysis, Halmstad, Sweden, 2003: 335-342. doi: 10.1007/3-540-45103-X_46. KITA Y, HIGHNAM R, and BRADY M. Correspondence between different view breast X rays using curved epipolar lines[J]. Computer Vision and Image Understanding, 2001, 83(1): 38-56. doi: 10.1006/cviu.2001.0908. PU Jiantao, ZHENG Bin, LEADER J K, et al. An ellipse- fitting based method for efficient registration of breast masses on two mammographic views[J]. Medical Physics, 2008, 35(2): 487-494. doi: 10.1118/1.2828188. MARTIN K E, HELVIE M A, ZHOU C, et al. Mammographic density measured with quantitative computer-aided method comparison with radiologists estimates and BI-RADS categories[J]. Radiology, 2006, 240(3): 656-665. doi: 10.1148/radiol.2402041947. WIRTH M A, CHOI C, and JENNINGS A. A nonrigid-body approach to matching mammograms[C]. Seventh International Conference on Image Processing and Its Applications, Manchester, UK, 1999: 484-488. doi: 10.1049/ cp:19990369. -
計(jì)量
- 文章訪問數(shù): 1536
- HTML全文瀏覽量: 200
- PDF下載量: 521
- 被引次數(shù): 0