基于基站密度和業(yè)務(wù)負(fù)載的異構(gòu)蜂窩網(wǎng)絡(luò)能效優(yōu)化
doi: 10.11999/JEIT160192 cstr: 32379.14.JEIT160192
國家自然科學(xué)基金(61671096),國家重點基礎(chǔ)研究發(fā)展計劃(2012CB316004),東南大學(xué)移動通信國家重點實驗室開放研究基金(2015D07)
Optimizing the Energy Efficiency of Heterogeneous Cellular Networks Based on the Base Station Density and Traffic Load
The National Natural Science Foundation of China (61671096), The National Basic Research Program of China (2012CB316004), The Open Research Fundation of National Mobile Communications Research Laboratory, Southeast University (2015D07)
-
摘要: 該文在兩層異構(gòu)網(wǎng)絡(luò)架構(gòu)下,采用泊松分布(PPP)建立基站分布模型,構(gòu)建基于基站密度和業(yè)務(wù)負(fù)載的網(wǎng)絡(luò)能效模型。分析基站密度對網(wǎng)絡(luò)能效的影響,并根據(jù)網(wǎng)絡(luò)業(yè)務(wù)流量的到達率對宏基站和小基站的密度進行聯(lián)合優(yōu)化,得到宏基站和小基站的最優(yōu)聯(lián)合密度,在保證網(wǎng)絡(luò)服務(wù)質(zhì)量的同時,使能效達到最優(yōu)。仿真結(jié)果表明,在不同的網(wǎng)絡(luò)業(yè)務(wù)需求下,通過基站密度的優(yōu)化,在保證網(wǎng)絡(luò)服務(wù)質(zhì)量的同時,合理部署宏基站和小基站的數(shù)量,可使能效大幅度提高。
-
關(guān)鍵詞:
- 異構(gòu)網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)能效 /
- 基站密度 /
- 最優(yōu)聯(lián)合密度
Abstract: Poisson Point Process (PPP) is used to establish the distribution model of base stations in two-tier heterogeneous networks, and formulate the energy efficiency maximization problem based on the base station density and the traffic load. The influence of the base station density on the energy efficiency is analyzed to optimize the densities of the macro base stations and small base stations according to the traffic load. The optimal densities of the macro base stations and small base stations are deduced, which can optimize the energy efficiency under the constraint of the quality of service. Simulation results indicate that, under the constraint of the quality of service, reasonable deployment of macro and small stations can greatly improve the energy efficiency. -
SAKER L and ELAYOUBI S E. Sleep mode implementation issues in green base stations[C]. IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, Istanbul, 2010: 1683-1688. ANDREWS J G and WAN C. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065-1082. doi: 10.1109/JSAC.2014.2328098. RAMAMONJISON R and BHARGAVA V K. Energy efficiency maximization framework in cognitive downlink two-tier networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1468-1479. doi: 10.1109/TWC. 2014.2367032. HAENGGI M. Stochastic Geometry for Wireless Network [M]. Location: Cambridge University Press, 2012: 92-95. ANDREWS J G, BACCELLI F, and GANTI R K. A tractable approach to coverage and rate in cellular networks [J]. IEEE Transactions on Communications, 2011, 59(11): 3122-3134. doi: 10.1109/TCOMM.2011.100411.100541. ARSHAD M W, VASTBERG A, and EDLER T. Energy efficiency gains through traffic offloading and traffic expansion in joint macro pico deployment[C]. IEEE Wireless Communications and Networking Conference, WCNC, Paris, 2012: 2203-2208. OBAID N and CZYLWIK A. The impact of deploying pico base stations on capacity and energy efficiency of heterogeneous cellular networks[C]. Personal Indoor and Mobile Radio Communications (PIMRC), London, 2013: 1904-1908. OUNI A, SAADANI A, and RIVANO H. Energy and throughput optimization for relay based heterogeneous networks[C]. 2013 IFIP Wireless Days (WD), Valencia, 2013: 1-6. XU J, ZHANG J, and ANDREWS J G. On the accuracy of the Wyner model in cellular networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(9): 3098-3109. doi: 10. 1109/TWC.2011.062911.100481. GILHOUSEN K, JACOBS I, PADOVANI R, et al. On the capacity of a cellular CDMA system[J]. IEEE Transactions on Vehicular Technology, 1991, 40(2): 303-312. doi: 10.1109/ 25.289411. ELSAWY H, HOSSAIN E, and HAENGGI M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey[J]. IEEE Communications Surveys Tutorials, 2013, 15(3): 996-1019. doi: 10.1109/SURV.2013.052213.00000. MISHRA M K and TRIVEDI A. Performance analysis of two tier cognitive heterogeneous cellular network[C]. 2015 21st National Conference on Communications, NCC, Mumbai, India, 2015: 1-6. SMILJKOVIKJ K, GAVRILOVSKA L, and POPOVSKI P. Efficiency analysis of downlink and uplink decoupling in Heterogeneous Networks[C]. 2015 IEEE International Conference on Communication Workshop, ICCW 2015, London, 2015: 125-130. YU P S, LEE J, QUEK T, et al. Traffic offloading in heterogeneous networks with energy harvesting personal cells-network throughput and energy efficiency[J]. IEEE Transactions on Wireless Communications, 2016, 15(2): 1146-1161. doi: 10.1109/TWC.2015.2485989. WANG Ying, ZHANG Yuan, and CHEN Yongce. Energy- efficient design of two-tier femtocell networks[J]. EURASIP Journal on Wireless Communications and Networking, 2015, 2015: 40. doi: 10.1186/s13638-015-0242-4. QUEK T Q S and CHEUN W C. Energy efficiency analysis of two-tier heterogeneous networks[C]. European Wireless Conference, Vienna, 2011: 712-716. YONG S S, TONY Q S Q, and SHIN H. Energy efficient heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(5): 840-850. doi: 10. 1109/JSAC.2013.130503. YU J, LIU Y, and YIN C. Energy-efficient base station deployment in heterogeneous cellular network with QoS constraint[C]. Workshop on End-to-End Green Cellular Networks, London, 2013: 26-30. RAO J and FAPOJUWO A O. Analysis of load dependent energy efficiency of two-tier heterogeneous cellular networks [C]. Mobile Wireless Networks, London, 2013: 3095-3099. HUANG Y, ZHANG X, ZHANG J, et al. Energy-efficient design in heterogeneous cellular networks based on large-scale user behavior constraints[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4746-4757. doi: 10.1109/TWC. 2014.2330334. JINDAL N, WEBER S, and ANDREWS J. Fractional power control for decentralized wireless networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(12): 5482-5492. doi: 10.1109/T-WC.2008.071439. -
計量
- 文章訪問數(shù): 1445
- HTML全文瀏覽量: 192
- PDF下載量: 338
- 被引次數(shù): 0