一種基于最大化Rayleigh熵的穩(wěn)健干擾對齊算法
doi: 10.11999/JEIT160103 cstr: 32379.14.JEIT160103
國家自然科學(xué)基金(61271259, 61471076),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ120501, KJ130536),長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1299),重慶市科委重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi)(CSTC)
A Robust Interference Alignment Algorithm Based on Maximizing the Rayleigh Entropy
The National Natural Science Foundation of China (61271259, 61471076), The Research Project of Chongqing Education Commission (KJ120501, KJ130536), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory (CSTC)
-
摘要: 干擾對齊在消除干擾方面具有獨(dú)到的優(yōu)勢,但需要完美的信道狀態(tài)信息(CSI),這在實(shí)際中很難實(shí)現(xiàn)。該文分析了傳統(tǒng)穩(wěn)健干擾對齊方案的優(yōu)缺點(diǎn),在此基礎(chǔ)上,提出一種最大化Rayleigh熵的穩(wěn)健干擾對齊算法,并對收斂性,自由度和頻譜效率等進(jìn)行了分析。不同于MAX-SINR算法,該文通過最大化信號的Rayleigh熵,求得干擾抑制矩陣。在正向通信中,考慮到數(shù)據(jù)流之間的相關(guān)性取干擾抑制矩陣為原始干擾抑制矩陣的酉矩陣形式,并采用注水功率分配實(shí)現(xiàn)用戶數(shù)據(jù)流間的最佳功率分配;基于信道的互惠性,在反向通信時(shí),做類似的處理。通過迭代計(jì)算,逐漸將干擾壓縮。最后,在完美CSI和誤差CSI時(shí),仿真表明該算法顯著地提高了系統(tǒng)的性能。
-
關(guān)鍵詞:
- 無線通信 /
- 穩(wěn)健干擾對齊 /
- 最大化Rayleigh熵 /
- 注水功率分配 /
- 系統(tǒng)性能
Abstract: Interference alignment has the advantage of eliminating interference, but it needs the perfect Channel State Information (CSI) which is difficult to achieve in practical systems. The advantages and disadvantages of robust interference alignment algorithms are analyzed in this paper. And then a robust interference alignment algorithm based on maximizing the Rayleigh entropy is proposed. The convergence, the degree of freedom and spectrum efficiency are analyzed at the same time. Unlike MAX-SINR algorithm, interference suppression matrix is obtained through maximizing the signal Rayleigh entropy. The unitary form of original interference suppression matrix is regarded as the optimal interference suppression matrix considering the correlation among the data flows. And then, the water-filling power allocation scheme is used to realize the optimal power allocation among user data flows. Meanwhile, the similar process is carried out in reverse communication link based on channel reciprocity. The interference is reduced gradually through alternately computing. Finally, under the conditions of perfect CSI and error CSI, the simulation results verify that the proposed algorithm improves the performance of the system. -
NAURYZBAYEV G and ALSUSA E. Enhanced multiplexing gain using interference alignment cancellation in multi-cell MIMO networks[J]. IEEE Transactions on Information Theory, 2016, 62(1): 357-369. doi: 10.1109/TIT.2015.2500583. KIM Myeongjin, LEE Hyunho, and KO Youngchai. Limited feedback design for interference alignment on two-cell interfering MIMO-MAC[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4019-4030. doi: 10.1109/TVT.2014.2366470. FARHADI H, WANG C, and SKOGLUND M. Ergodic interference alignment with limited feedback: power control and rate adaptation[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6679-6694. doi: 10.1109/ TWC.2015.2457925. 趙睿, 楊綠溪. 基于泊松點(diǎn)過程分布的多蜂窩協(xié)作系統(tǒng)中干擾對齊技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2015, 37(5): 1194-1199. doi: 10.11999/JEIT140986. ZHAO Rui and YANG Luxi. Research on interference alignment technique in multi-cell cooperative systems based on Poisson point process[J]. Journal of Electronics Information Technology, 2015, 37(5): 1194-1199. doi: 10.11999/JEIT140986. SCHMIDT D, SHI C, BERRY R, et al. Minimum mean squared error interference alignment[C]. Proceedings of the IEEE 43th Asilomar Conference on Signals, Systems and Computers, Asilomar, America, 2009: 1106-1110. doi: 10.1109/ACSSC.2009.5470055. SHEN Hui, LI Bin, TAO Meixia, et al. MSE-based transceiver designs for the MIMO interference channel[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3480-3489. doi: 10.1109/TWC.2010.091510.091836. TRESCH R and GUILLAUD M. Cellular interference alignment with imperfect channel knowledge[C]. Proceedings of the IEEE International Conference on Communications(ICC), Dresden, Germany, 2009: 1-5. doi: 10.1109/ICCW.2009.5208018. FARHADI H, ZAIDI A A, FISCHIONE C, et al. Distributed interference alignment and power control for wireless MIMO interference networks with noisy channel state information[C]. Proceedings of the IEEE 1th International Black Sea Conference on Communications and Networking, Black Sea, Turkey, 2013: 23-27. doi: 10.1109/BlackSeaCom.2013.6623375. HUANG Huang, LAU V K N, DU Yinggang, et al. Robust lattice alignment for K user MIMO interference channels with imperfect channel knowledge[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3315-3325. doi: 10.1109/ TSP.2011.2135855. 謝顯中, 邵奇, 周志棟, 等. 非理想信道狀態(tài)信息下的穩(wěn)健干擾安排設(shè)計(jì)[J]. 北京郵電大學(xué)學(xué)報(bào), 2012, 35(3): 6-10. XIE Xianzhong, SHAO Qi, ZHOU Zhidong, et al. A robust interference alignment scheme with imperfect CSI used in multi-cell System[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(3): 6-10. 謝顯中, 張森林, 肖正瑛. 一種基于QR分解的穩(wěn)健干擾對齊算法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1957-1963. doi: 10.11999/JEIT141585. XIE Xianzhong, ZHANG Senlin, and XIAO Zhengying. A robust interference alignment algorithm based on QR decomposition[J]. Journal of Electronics Information Technology, 2015, 37(8): 1957-1963. doi: 10.11999/JEIT141585. MAHMOUD A, EL Khamy M, and ELSAYED K. Interference alignment performance on MIMO X channels with imperfect channel knowledge[C]. Proceedings of the IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Istanbul, Turkey, 2012: 239-243. doi: 10.1109/SPAWC.2012.6292901. Razavi S M, Ratnarajah T, Masouros C, et al. Joint interference and phase alignment in multiuser MIMO interference channels[C]. Proceedings of the IEEE 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 2012: 1137-1141. doi: 10.1109/ACSSC.2012.6489198. RAZAVI S M and RATNARAJAH T. Adaptively regularized phase alignment precoding for multiuser multiantenna downlink[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4863-4869. doi: 10.1109/TVT.2014.2372754. GOMADAM K, CADAMBE V R, and JAFAR S A. Distributed numerical approach to interference alignment and applications to wireless interference networks[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3309-3322. doi: 10.1109/TIT.2011.2142270. AQUILINA P and RATNARAJAH T. Performance analysis of IA techniques in the MIMO IBC with imperfect CSI[J]. IEEE Transactions on Communications, 2015, 63(4): 1259-1270. doi: 10.1109/TCOMM.2015.2408336. 張賢達(dá). 矩陣分析及應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004: 71-73. ZHANG Xianda. Matrix Analysis and Application[M]. Beijing: Tsinghua University Press, 2004: 71-73. GOLDSMITH A. Wireless Communications[M]. England, UK, Cambridge University Press, 2005: 303-305. -
計(jì)量
- 文章訪問數(shù): 1244
- HTML全文瀏覽量: 111
- PDF下載量: 315
- 被引次數(shù): 0