超混沌復系統(tǒng)的自適應廣義組合復同步及參數辨識
doi: 10.11999/JEIT160101 cstr: 32379.14.JEIT160101
-
2.
(大連理工大學電子信息與電氣工程學部 大連 116024) ②(阜陽師范學院計算機與信息工程學院 阜陽 236041)
基金項目:
國家自然科學基金(61370145, 61173183),安徽省高校省級自然科學基金(KJ2012A214)
Adaptive Generalized Combination Complex Synchronization and Parameter Identification of Hyperchaotic Complex Systems
-
2.
(Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China)
Funds:
The National Natural Science Foundation of China (61370145, 61173183), The Natural Science Foundation of Anhui Provincial Universities (KJ2012A214)
-
摘要: 該文針對含未知參數的異結構超混沌復系統(tǒng),基于自適應控制及Lyapunov穩(wěn)定性理論,提出一種新的自適應廣義組合復同步方法 (GCCS)。首先給出廣義組合復同步的定義,將驅動-響應系統(tǒng)的同步問題轉化為誤差系統(tǒng)零解的穩(wěn)定性問題;然后從理論上設計了非線性反饋同步控制器及參數辨識更新律,并引入誤差反饋增益,以控制同步的收斂速度;最后以超混沌復Lorenz系統(tǒng)、超混沌復Chen系統(tǒng)、超混沌復L系統(tǒng)的廣義組合復同步與參數估計為例,從數值仿真角度驗證了所提方法的正確性和有效性。
-
關鍵詞:
- 超混沌復系統(tǒng) /
- 廣義組合復同步 /
- 參數辨識 /
- 自適應控制
Abstract: Based on adaptive control and Lyapunov stability theory, a novel adaptive Generalized Combination Complex Synchronization (GCCS) scheme is proposed for nonidentical hyperchaotic complex systems with unknown parameters. Firstly, the definition of GCCS is presented, and synchronization of drive-response systems is transformed to the zero solution analysis of the error dynamical system. Secondly, a nonlinear feedback controller and parameter update laws are theoretically designed, wherein error feedback gains are introduced to control synchronization speed. Finally, GCCS among the hyperchaotic complex Lorenz system, complex Chen system, and complex L system is carried out to verify the correctness and effectiveness of the proposed scheme by numerical simulation. -
PECORA L M and CARROLL T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821-824. doi: 10.1103/PhysRevLett.64.821. SUN Zhiyong, SI Gangquan, MIN Fuhong, et al. Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures[J]. Nonlinear Dynamics, 2012, 68(4): 471-486. doi: 10.1007/s11071-011-0230-0. ZHANG Fangfang. Lag synchronization of complex Lorenz system with applications to communication[J]. Entropy, 2015, 17(7): 4974-4985. doi: 10.3390/e17074974. 禹思敏, 呂金虎, 李澄清. 混沌密碼及其在多媒體保密通信中應用的進展[J]. 電子與信息學報, 2016, 38(3): 735-752. doi: 10.11999/JEIT151356. YU Simin, L Jinhu, and LI Chengqing. Some progresses of chaotic cipher and its applications in multimedia secure communications[J]. Journal of Electronics Information Technology, 2016, 38(3): 735-752. doi: 10.11999/JEIT151356. 于海濤, 王江. 基于反演自適應動態(tài)滑模的FitzHugh- Nagumo神經元混沌同步控制[J]. 物理學報, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511. YU Haitao and WANG Jiang. Chaos synchronization of FitzHugh-Nagumo neurons via backstepping and adptive dynamical sliding mode control[J]. Acta Physica Sinica, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511. 張友安, 余名哲, 耿寶亮. 基于投影法的不確定分數階混沌系統(tǒng)自適應同步[J]. 電子與信息學報, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514. ZHANG Youan, YU Mingzhe, and GENG Baoliang. Adaptive synchronization of uncertain fractional-order chaotic systems based on projective method[J]. Journal of Electronics Information Technology, 2015, 37(2): 455-460. doi: 10.11999/ JEIT140514. MAHMOUD G M, BOUNTIS T, ABDEL-LATIF G M, et al. Chaos synchronization of two different chaotic complex Chen and L systems[J]. Nonlinear Dynamics, 2008, 55(1): 43-53. doi: 10.1007/s11071-008-9343-5. ZHOU Xiaobing, XIONG Lianglin, CAI Weiwei, et al. Adaptive synchronization and antisynchronization of a hyperchaotic complex Chen system with unknown parameters based on passive control[J]. Journal of Applied Mathematics, 2013, 23(1): 309-338. doi: 10.1155/2013/845253. WANG Xingyuan and ZHANG Hao. Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system[J]. Chinese Physics B, 2013, 22(4): 558-562. doi: 10.1088/1674-1056/22/4/048902. MAHMOUD G M and MAHMOUD E E. Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems[J]. Nonlinear Dynamics, 2010, 61(1-2): 141-152. doi: 10.1007/s11071-009-9637-2. WANG Shibing, WANG Xingyuan, and ZHOU Yufei. A memristor-based complex Lorenz system and its modified projective synchronization[J]. Entropy, 2015, 17(11): 7628-7644. doi: 10.3390/e17117628. LIU Jian, LIU Shutang, and YUAN Chunhua. Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters[J]. Nonlinear Dynamics, 2015, 79(2): 1035-1047. doi: 10.1007/s11071-014-1721-6. WANG Shibing, WANG Xingyuan, and HAN Bo. Complex generalized synchronization and parameter identification of nonidentical nonlinear complex systems[J]. PLoS One, 2016, 11(3): e0152099. doi: 10.1371/journal.Pone.0152099. ZHOU Xiaobing, JIANG Murong, and HUANG Yaqun. Combination synchronization of three identical or different nonlinear complex hyperchaotic systems[J]. Entropy, 2013, 15(9): 3746-3761. doi: 10.3390/e15093746. SUN Junwei, CUI, Guangzhao, WANG Yanfeng, et al. Combination complex synchronization of three chaotic complex systems[J]. Nonlinear Dynamics, 2015, 79(2): 953-965. doi: 10.1007/s11071-014-1714-5. JIANG Cuimei, LIU Shutang, and WANG Da. Generalized combination complex synchronization for fractional-order chaotic complex systems[J]. Entropy, 2015, 17(8): 5199-5217. doi: 10.3390/e17085199. LUO Runzi, WANG Yinglan, and DENG Shucheng. Combination synchronization of three classic chaotic systems using active backstepping design[J]. Chaos, 2011, 21(4): 043114. doi: 10.1063/1.3655366. RULKOV N F, SUSHCHIK M M, TSIMRING L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E, 1995, 51(2): 980-994. doi: 10.1103/PhysRevE.51.980. -
計量
- 文章訪問數: 1321
- HTML全文瀏覽量: 228
- PDF下載量: 416
- 被引次數: 0