超高速全并行快速傅里葉變換器
doi: 10.11999/JEIT160036 cstr: 32379.14.JEIT160036
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(6150010678, 61371104)
An Ultra-high-speed Fully-parallel Fast Fourier Transform Design
Funds:
The National Natural Science Foundation of China (6150010678, 61371104)
-
摘要: 設(shè)計(jì)和實(shí)現(xiàn)超高速快速傅里葉變換器(FFT)在雷達(dá)與未來無線通信等系統(tǒng)中具有重要意義。該文提出首個(gè)全并行架構(gòu)的FFT處理器,其避免了復(fù)雜的路由尋址以及數(shù)據(jù)訪問沖突等問題,基于較大基進(jìn)行分解降低運(yùn)算復(fù)雜度。由于旋轉(zhuǎn)因子已知和固定,大量的乘法轉(zhuǎn)化為了定系數(shù)乘法。同時(shí)由于采用了串行的計(jì)算單元,在達(dá)到全并行結(jié)構(gòu)的高速度同時(shí)硬件復(fù)雜度相對(duì)較低;所有的硬件計(jì)算單元處于滿載的條件,其硬件效率能達(dá)到100%。根據(jù)實(shí)際的實(shí)現(xiàn)結(jié)果,所提出的512點(diǎn)FFT處理器結(jié)構(gòu)能夠達(dá)到5.97倍速度面積比的提升,同時(shí)硬件開銷僅占用了Xilinx V7-980t FPGA 30%的查找表資源與9%的寄存器資源。
-
關(guān)鍵詞:
- 快速傅里葉變換 /
- 全并行 /
- 比特串行計(jì)算 /
- 常系數(shù)乘法
Abstract: The design and implementation of ultra-high-speed FFT processor is imperative in radar system and prospective wireless communication system. In this paper, the fully-parallel-architecture FFT with bit-serial arithmetic is proposed. This method avoids the complexity of data addressing, access and routing. Based on the high-radix factorization, the multiplication number can be reduced. Out of the reason that twiddle factors are fixed in the design, constant coefficient optimization can be used in multiplications. Besides, bit-serial arithmetic cuts down the hardware cost, and makes the computation elements full-load to get a 100% efficiency. As a result, the presented 512-point FFT processer has 5.97 times gain in speed-throughput ratio while its hardware only accounts for 30% LUTs and 9% registers resource based on Xilinx V7-980t FPGA. -
霍凱, 趙晶晶. OFDM新體制雷達(dá)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2776-2789. doi: 10.11999/ JEIT150335. HUO Kai and ZHAO Jinjin. The development and prospect of the new OFDM radar[J]. Journal of Electronics Information Technology, 2015, 37(11): 2776-2789. doi: 10. 11999/JEIT150335. 張洪倫, 巴曉輝, 陳杰, 等. 基于FFT的微弱GPS信號(hào)頻率精細(xì)估計(jì)[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2132-2137. doi: 10.11999/JEIT150204. ZHANG Honglun, BA Xiaohui, CHEN Jie, et al. FFT-based fine frequency estimation for weak GPS signal[J]. Journal of Electronics Information Technology, 2015, 37(9): 2132-2137. doi: 10.11999/JEIT150204. 羅亞松, 許江湖, 胡洪寧, 等. 正交頻分復(fù)用傳輸速率最大化自適應(yīng)水聲通信算法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(12): 2872-2876. doi: 10.11999/JEIT150440. LUO Yasong, XU Jianghu, HU Hongning, et al. Research on self-adjusting OFDM underwater acoustic communication algorithm for transmission rate maximization[J]. Journal of Electronics Information Technology, 2015, 37(12): 2872-2876. doi: 10.11999/JEIT150440. WANG Chao, YAN Yuwei, and FU Xiaoyu. A high- throughput low-complexity radix-24-22-23 FFT/IFFT processor with parallel and normal input/output order for IEEE 802.11ad systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23(11): 2728-2732. doi: 10.1109/TVLSI.2014.2365586. YU Chu and YEN Mao-Hsu. Area-efficient 128-to 2048/ 1536-point pipeline FFT processor for LTE and mobile WiMAX systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 23(9): 1793-1800. doi: 10.1109/ TVLSI.2014.2350017. WANG Zeke, LIU Xue, HE Bingsheng, et al. A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 23(5): 973-977. doi: 10.1109/TVLSI.2014. 2319335. CHEN Jienan, Hu Jianhao, and LEE Shuyang. High throughput and hardware efficient FFT architecture for LTE application[C]. IEEE Wireless Communications Networking Conference. Shanghai, 2012: 826-831. doi: 10.1109/WCNC.2012.6214486. CHEN Jienan, HU Jianhao, LEE Shuyang, et al. Hardware efficient mixed radix-25/16/9 FFT for LTE systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23(2): 221-229. doi: 10.1109/TVLSI.2014.2304834. COOLEY J W and TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301. doi: 10.2307/2003354. DUHAMEL P and VETTERLI M. Fast fourier transforms: a tutorial review and a state of the art[J]. Signal Processing, 1990, 19(4): 259-299. doi: 10.1016/0165-1684(90)90158-U. YANG Lang and CHEN T W. A low power 64-point bit-serial FFT engine for implantable biomedical applications[C]. Euromicro Conference on Digital System Design, Funchal, Portugal, 2015: 383-389. doi: 10.1109/DSD.2015.30. PARHI K K. VLSI Digital Signal Processing Systems: Design and Implementation[M]. New York, USA, John Wiley Sons, 1999: 490-499. MA Zhenguo, YIN Xiaobo, and YU Feng. A novel memory-based FFT architecture for real-valued signals based on radix-2 decimation-in-frequency algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 876-880. doi: 10.1109/TCSII.2015.2435522. -
計(jì)量
- 文章訪問數(shù): 1782
- HTML全文瀏覽量: 183
- PDF下載量: 544
- 被引次數(shù): 0