一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于高維度特征分析的非局部圖像質(zhì)量評(píng)價(jià)方法

丁勇 李楠

丁勇, 李楠. 基于高維度特征分析的非局部圖像質(zhì)量評(píng)價(jià)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
引用本文: 丁勇, 李楠. 基于高維度特征分析的非局部圖像質(zhì)量評(píng)價(jià)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
DING Yong, LI Nan. Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430
Citation: DING Yong, LI Nan. Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2365-2370. doi: 10.11999/JEIT151430

基于高維度特征分析的非局部圖像質(zhì)量評(píng)價(jià)方法

doi: 10.11999/JEIT151430 cstr: 32379.14.JEIT151430
基金項(xiàng)目: 

國(guó)家863計(jì)劃(2015AA016704c),浙江省自然科學(xué)基金(LY14F020028)

Image Quality Assessment Based on Non-localHigh Dimensional Feature Analysis

Funds: 

Items: The National 863 Program of China (2015AA016704c), Zhejiang Provincial Natural Science Foundation (LY14F020028)

  • 摘要: 傳統(tǒng)的圖像質(zhì)量評(píng)價(jià)方法通常提取低維度特征即圖像的片面信息用來(lái)分析圖像質(zhì)量。高維度特征盡管不易分析但保留了更多信息,更利于全面分析圖像質(zhì)量。針對(duì)這種現(xiàn)狀,該文提出一種優(yōu)化數(shù)據(jù)采樣后基于高維度特征分析的圖像質(zhì)量評(píng)價(jià)方法。首先對(duì)圖像數(shù)據(jù)采樣分別利用塊匹配進(jìn)行篩選,用主成分分析進(jìn)行降維,其次利用核獨(dú)立分量分析從圖像數(shù)據(jù)采樣中提取高維度特征,最后基于自然圖像統(tǒng)計(jì)特性對(duì)特征進(jìn)行綜合得出圖像質(zhì)量。實(shí)驗(yàn)結(jié)果表明所提方法與人的主觀評(píng)價(jià)較為一致。
  • HE L, GAO F, HOU W, et al. Objective image quality assessment: A survey[J]. International Journal of Computer Mathematics, 2014, 91(11): 2374-2388. doi: 10.1080/ 00207160.2013.816415.
    WANG Zand BOVIK A C. Reduced-and no-reference image quality assessment[J]. IEEE Signal Processing Magazine, 2011, 28(6): 29-40. doi: 10.1109/MSP.2011.942471.
    HU A, ZHANG R, YIN D, et al. Image quality assessment using a SVD-based structural projection[J]. Signal Processing: Image Communication, 2014, 29(3): 293-302. doi: 10.1016/ j.image.2014.01.007.
    HYVARINEN A, HURRI J, and HOYER P O. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision[M]. US, Springer Science Business Media, 2009, Chap 4. doi: 10.1007/978-1-84882-491-1.
    HORE A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 2010: 2366-2369. doi: 10.1109/ICPR.2010.579.
    GAO X, LU W, LI X, et al. Wavelet-based contourlet in quality evaluation of digital images[J]. Neurocomputing, 2008, 72(1): 378-385. doi: 10.1016/j.neucom.2007.12.031.
    DING Y, DAI H, and WANG S. Image quality assessment scheme with topographic independent components analysis for sparse feature extraction[J]. Electronics Letters, 2014, 50(7): 509-510. doi: 10.1049/el.2013.4298.
    LUO C, WANG Y, DING Y, et al. Image quality assessment based on independent component analysis[C]. IEEE 2014 12th International Conference on. Signal Processing (ICSP), Hangzhou, China, 2014: 922-927. doi: 10.1109/ICOSP.2014. 7015139.
    MANIKANDAN L C and SELVAKUMAR R K. A new survey on block matching algorithms in video coding[J]. International Journal of Engineering Research, 2014, 3(2): 121-125.
    ZHONG H, MA K, and ZHOU Y. Modified BM3D algorithm for image denoising using nonlocal centralization prior[J]. Signal Processing, 2015, 106: 342-347. doi: 10.1016/ j.sigpro.2014.08.014.
    SHLENS J. A tutorial on principal component analysis[J]. Eprint Arxiv, 2014, 58(3): 219-226.
    ABDI H and WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. doi: 10.1002/wics.101.
    BACH F R and JORSAN M I. Kernel independent component analysis[J]. The Journal of Machine Learning Research, 2003, 3: 1-48.
    LIU M and YANG X. Image quality assessment using contourlet transform[J]. Optical Engineering, 2009, 48(10): 107201-10.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1338
  • HTML全文瀏覽量:  161
  • PDF下載量:  383
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-04-19
  • 刊出日期:  2016-09-19

目錄

    /

    返回文章
    返回