基于帕累托最優(yōu)的雷達(dá)-通信共享孔徑研究
doi: 10.11999/JEIT151377 cstr: 32379.14.JEIT151377
-
2.
(清華大學(xué)電子工程系 北京 100084) ②(中國洛陽電子裝備試驗中心 洛陽 471003)
基金項目:
國家自然科學(xué)基金(61571260)
Optimal Allocation of Shared Aperture in Radar-communication Integrated System Based on Pareto Optimality
-
2.
(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
Funds:
The National Natural Science Foundation of China (61571260)
-
摘要: 針對雷達(dá)-通信綜合射頻系統(tǒng),該文提出一種基于環(huán)境信息的共享孔徑動態(tài)分配方法。首先基于帕累托最優(yōu)理論將共享孔徑分配建模為一個多目標(biāo)優(yōu)化問題,并建立了雷達(dá)陣列方向圖的峰值旁瓣電平和多輸入多輸出(MIMO)通信系統(tǒng)的信道容量兩個優(yōu)化目標(biāo)函數(shù)。然后提出一種基于整數(shù)編碼的改進(jìn)粒子群算法,通過迭代求解以帕累托前沿的形式給出一組最優(yōu)解,供決策者根據(jù)任務(wù)需求從中選出一個最滿意的解。最后,仿真結(jié)果驗證了該方法的有效性。
-
關(guān)鍵詞:
- 共享孔徑 /
- 綜合射頻系統(tǒng) /
- 多目標(biāo)優(yōu)化 /
- 粒子群算法 /
- 帕累托最優(yōu)
Abstract: In this work, considering a radar-communication integrated radio frequency system, a dynamic allocation method of shared aperture using relevant environmental information is proposed. Firstly, the shared aperture allocation task is formulated as a Multi-Objective Optimization (MOO) problem based on Pareto optimality, which uses the peak side-lobe level of radar array pattern and the channel capacity of Multiple Input Multiple Output (MIMO) communication system as its objective function. Then, an improved particle swarm optimization algorithm based on integer encoding is proposed to solve the MOO problem. The iterative algorithm can find out a set of optimal solutions in the form of Pareto front, one of which can be chosen by decision makers as the most satisfactory solution according to mission requirements. Finally, the simulation results verify the effectiveness of the proposed method. -
TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009-1020. doi: 10.1109/TMTT.2005.843485. 張明友. 雷達(dá)-電子戰(zhàn)-通信一體化概論[M]. 北京: 國防工業(yè)出版社, 2010: 1-15. ZHANG Mingyou. The Conspectus of Integrated Radar- Electronic Warfare-Communication[M]. Beijing: National Defense Industry Press, 2010: 1-15. 吳遠(yuǎn)斌. 多功能射頻綜合一體化技術(shù)的研究[J]. 現(xiàn)代雷達(dá), 2013, 35(8): 70-74. WU Yuanbin. Research on technology of multifunction radio frequency integration[J]. Modern Radar, 2013, 35(8): 70-74. QUAN Siji, QIAN Weiping, GUO Junhai, et al. Radar- communication integration: An overview[C]. 2014 IEEE 7th International Conference on Advanced Infocomm Technology (ICAIT), Fuzhou, China, 2014: 98-103. doi: 10.1109/ ICAIT.2014.7019537. 胡元奎, 靳學(xué)明, 范忠亮. 多功能綜合射頻系統(tǒng)技術(shù)研究[J]. 雷達(dá)科學(xué)與技術(shù), 2015, 13(3): 233-239. doi: 10.3969/j.issn. 1672-2337.2015.03.003. HU Yuankui, JIN Xueming, and FAN Zhongliang. Research on multi-function integrated RF system technology[J]. Radar Science and Technology, 2015, 13(3): 233-239. doi: 10.3969/ j.issn.1672-2337.2015.03.003. KHODIER M M and CHRISTODOULOU C G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8): 2674-2679. doi: 10.1109/TAP.2005.851762. HA B V, ZICH R E, MUSSETTA M, et al. Thinned array optimization by means of M-cGA[C]. 2014 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Tennessee, USA, 2014: 1956-1957. doi: 10.1109/APS.2014.6905305. WANG Xiangrong, ABOUTANIOS E, and AMIN M G. Thinned array beampattern synthesis by iterative soft- thresholding-based optimization algorithms[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6102-6113. doi: 10.1109/TAP.2014.2364048. 嚴(yán)韜, 陳建文, 鮑拯. 基于改進(jìn)遺傳算法的天波超視距雷達(dá)二維陣列稀疏優(yōu)化設(shè)計[J]. 電子與信息學(xué)報, 2014, 36(12): 3014-3020. doi: 10.3724/SP.J.1146.2013.02011. YAN Tao, CHEN Jianwen, and BAO Zheng. Optimization design of sparse 2-D arrays for over-the-horizon radar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(12): 3014-3020. doi: 10.3724/SP.J.1146.2013.02011. FOSCHINI G J and GANS M J. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998, 6(3): 311-335. doi: 10.1109/TVT.2014.2363170. TELATAR E. Capacity of multi-antenna gaussian channels [J]. European Transactions on Telecommunications, 1999, 10(6): 585-595. doi: 10.1002/ett.4460100604. POURAHMADI V, KOHANDANI F, and MOBASHER A. On the accuracy of channel modeling based on the Kronecker product[C]. 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), Ottawa, Canada, 2010: 1-5. doi: 10.1109/VETECF.2010.5594341. LOYKA S L. Channel capacity of MIMO architecture using the exponential correlation matrix[J]. IEEE Communications Letters, 2001, 5(9): 369-371. doi: 10.1109/4234.951380. GOROKHOV A. Antenna selection algorithms for MEA transmission systems[C]. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 2002, III: 2857-2860. doi: 10.1109/ ICASSP.2002.5745244. SANAYEI S and NOSRATINIA A. Capacity of mimo channels with antenna selection[J]. IEEE Transactions on Information Theory, 2007, 53(11): 4356-4362. doi: 10.1109/ TIT.2007.907476. REYES-SIERRA M and COELLO C C. Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308. RAQUEL C R and NAVAL Jr P C. An effective use of crowding distance in multiobjective particle swarm optimization[C]. The 7th Annual conference on Genetic and Evolutionary Computation, Washington, DC, USA, 2005: 257-264. doi: 10.1145/1068009.1068047. KENNEDY J and EBERHART R. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995, 4: 1942-1948. doi: 10.1109/ICNN.1995. 488968. NANBO J and RAHMAT-SAMII Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 556-567. doi: 10.1109/TAP.2007.891552. YUAN Quan and YIN G. Analyzing convergence and rates of convergence of particle swarm optimization algorithms using stochastic approximation methods[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1760-1773. doi: 10.1109/ TAC.2014.2381454. KNOWLES J and CORNE D. Approximating the nondominated front using the pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8(2): 149-172. doi: 10.1162/106365600568167. MAHETA H H and DABHI V K. An improved SPEA2 multi objective algorithm with non dominated elitism and generational crossover[C]. 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 2014: 75-82. doi: 10.1109/ ICICICT.2014.6781256. KARIMI F and LOTFI S. Solving multi-objective problems using SPEA2 and Tabu search[C]. 2014 Iranian Conference on Intelligent Systems (ICIS), Bam, Iran, 2014: 1-6. doi: 10.1109/IranianCIS.2014.6802566. DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017. KONAK A, COIT D W, and SMITH A E. Multi-objective optimization using genetic algorithms: A tutorial[J]. Reliability Engineering System Safety, 2006, 91(9): 992-1007. doi: 10.1016/j.ress.2005.11.018. -
計量
- 文章訪問數(shù): 1852
- HTML全文瀏覽量: 157
- PDF下載量: 395
- 被引次數(shù): 0