高性能時(shí)不變LDPC卷積碼構(gòu)造算法研究
doi: 10.11999/JEIT151376 cstr: 32379.14.JEIT151376
國(guó)家自然科學(xué)基金(61401164, 61572534, 60141176, 61002012, 61501126),廣東省自然科學(xué)基金(2014A030310308, S2013010016297),廣東省優(yōu)秀青年教師培養(yǎng)計(jì)劃(YQ2015046)
New Ensemble of Time-invariant LDPC Convolutional Codes with High Performance
The National Natural Science Foundation of China (61401164, 61572534, 60141176, 61002012, 61501126), The Natural Science Foundation of Guangdong Province of China (2014A030310308, S2013010016297), The High Education Excellent Young Teacher Program of Guangdong Province (YQ2015046)
-
摘要: 該文基于由QC-LDPC碼獲得時(shí)不變LDPC卷積碼的環(huán)同構(gòu)方法,設(shè)計(jì)了用有限域上元素直接獲得時(shí)不變LDPC卷積碼多項(xiàng)式矩陣的新算法。以MDS卷積碼為例,給出了一個(gè)具體的構(gòu)造過(guò)程。所提構(gòu)造算法可確保所獲得的時(shí)不變LDPC卷積碼具有快速編碼特性、最大可達(dá)編碼記憶以及設(shè)計(jì)碼率。基于滑動(dòng)窗口的BP譯碼算法在AWGN信道上的仿真結(jié)果表明,該碼具有較低的誤碼平臺(tái)和較好的糾錯(cuò)性能。Abstract: In this paper, a new ensemble of the polynomial matrix of a time-invariant LDPC convolutional code is proposed. Based on the method of deriving time-invariant LDPC convolutional codes from QC (Quasi-Cyclic)- LDPC block codes, the elements over finite fields are used to generate directly the polynomial parity-check matrices of LDPC convolutional codes. A concrete example of using MDS (Maximum-Distance Separable) convolutional codes to derive the polynomial matrices is given. The proposed method ensures the fast encoding property, maximum encoding memory and designed rate. Simulation results show that the proposed LDPC convolutional codes exhibit low error floor and good decoding performance under BP (Belief Propagation) decoding algorithm over AWGN (Additive White Gaussian Noise) channel.
-
Key words:
- LDPC convolutional codes /
- Finite fields /
- Fast encoding /
- Time-invariant /
- Maximum encoding memory
-
FELTSTROM A and ZIGANGIROV K. Time-varying periodic convolutional codes with low-density parity-check matrix[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2181-2191. BOCHAROVA I, KUDRYASHOV B, and JOHANNESSON R. Searching for binary and nonbinary block and convolutional LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(1): 163-183. ZHAO Yue and LAU F. Implementation of decoders for LDPC block codes and LDPC convolutional codes based on GPUs[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 25(3): 663-672. ZHOU Hua and GOERTZ N. Recoverability of variable nodes in periodically punctured LDPC convolutional code[J]. IEEE Communications Letters, 2015, 19(4): 521-524. BALDI M, CANCELLIERI G, and CHIARALUCE F. Array convolutional low-density parity-check codes[J]. IEEE Communications Letters, 2014, 18(2): 336-339. GIOULEKAS F, PETROU C, VGENIS A, et al. On the construction of LDPC convolutional code ensembles based on permuted circulant unit matrices[C]. IEEE International Conference on Electronics, Circuits and Systems, Marseille, 2014: 407-410. JUNHO C and SCHMALEN L. Construction of protographs for large-girth structured LDPC convolutional codes[C]. IEEE International Conference on Communications, London, 2015: 4412-4417. SRIDHARAN A and COSTELLO D. A new construction for low density parity check convolutional codes[C]. Proceedings of the IEEE Information Theory Workshop, Bangalore, India, 2002: 212. ZHOU Hua and GOERTZ N. Girth analysis of polynomial- based time-invariant LDPC convolutional codes[C]. International Conference on Systems, Signals and Image Processing, Vienna, 2012: 104-108. TANNER R, SRIDHARA D, SRIDHARAN A, et al. LDPC block and convolutional codes based on circulant matrices[J]. IEEE Transactions on Information Theory, 2004, 50(12): 2966-2984. ESMAEILI M and GHOLAMI M. Geometrically-structured maximum-girth LDPC block and convolutional codes[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 831-845. PUSANE A, SMARANDACHE R, VONTOBEL P, et al. Deriving good LDPC convolutional codes from LDPC block codes[J]. IEEE Transactions on Information Theory, 16(6): 897-900. MU Liwei, LIU Xingcheng, and LIANG Chulong. Construction of binary LDPC convolutional codes based on finite fields[J]. IEEE Communications Letters, 2012, 16(6): 897-900. CHEN Chao, BAI Baoming, and WANG Xingmei. Construction of quasi-cyclic LDPC codes based on a two-dimensional MDS code[J]. IEEE Communications Letters, 2010, 14(5): 447-449. JUSTESEN J. An algebraic construction of rate 1/v convolutional codes[J]. IEEE Transactions on Information Theory, 1975, 21(5): 577-580. -
計(jì)量
- 文章訪問(wèn)數(shù): 1341
- HTML全文瀏覽量: 211
- PDF下載量: 336
- 被引次數(shù): 0