基于3D區(qū)域增長法和改進的凸包算法相結合的全肺分割方法
doi: 10.11999/JEIT151365 cstr: 32379.14.JEIT151365
基金項目:
國家自然科學基金(U1301251, 61271435),北京市自然科學基金(4141003)
Lung Segmentation Method Based on 3D Region Growing Method and Improved Convex Hull Algorithm
Funds:
The National Natural Science Foundation of China (U1301251, 61271435), Beijing Natural Science Foundation (4141003)
-
摘要: 肺實質分割結果的準確性在實際臨床應用中具有非常重要的意義。但由于肺結節(jié)的位置、大小、形狀的不規(guī)則性,肺部病變的多樣性,以及人體胸部解剖結構的明顯差異等,使得各類分割方法不能統(tǒng)一地適用于所有的胸部CT圖像,所以對于肺實質分割方法的研究仍具有很大的挑戰(zhàn)。該文在國內外研究分析的基礎上提出基于3D區(qū)域增長法與改進的凸包修補算法相結合的全肺分割方法。在3D區(qū)域增長法的粗分割基礎上,對分割的結果進行細化工作,通過連通域標記法與形態(tài)學方法相結合去除氣管和主支氣管,得到初步的肺實質掩膜,最后應用改進的凸包算法對肺部輪廓進行修補平滑,最終得到肺部分割結果。通過與凸包算法及滾球法相對比,證明該文所提改進的凸包算法能夠有效地修補肺部輪廓凹陷,修補后的結果分割精度較高。
-
關鍵詞:
- 肺部分割 /
- 3D區(qū)域增長法 /
- 凸包算法 /
- 區(qū)域連通分析
Abstract: The accuracy of lung segmented results is important in actual clinical application. However, all kinds of segmentation methods can not be uniform for all the chest CT (Computed Tomography) images because of the irregularities and diversity of lung disease, as well as significant differences in the anatomy of the human chest. Lung parenchyma segmentation studies still have a great challenge. Based on the analysis of domestic and international research, a new lung segmentation method is presented by combining with 3D region growing method and improved convex hull patching algorithm. Firstly, the 3D region growing method is adopted for the rough segmentation of lung CT images. Then the refining work is done to the segmented results. The connected domain labeling and morphological methods are used to remove the trachea and main bronchi to get the pulmonary parenchyma mask. The improved convex hull algorithm is presented to repair and smooth the concavities of lung contour. Finally, the segmented results can be gotten. The improved convex hull algorithm can repair the concavities of lung contour effectively in comparison with the convex hull algorithm and the rolling ball method, and the segmentation precision of results is very high after repairing. -
MANSOOR A, BAGCI U, XU Z, et al. A generic approach to pathological lung segmentation[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2293-2310. doi: 10.1109/TMI. 2014.2384693. 王娜娜, 陳樹越. 基于CT圖像的肺實質分割技術研究[J]. 電子測試, 2012(4): 38-43. doi: 10.3969/j.issn.1000-8519.2012. 04.009. WANG Nana and CHEN Shuyue. Research progress of lung parenchyma segmentation techniques based on CT images [J]. Electronic Test. 2012(4): 38-43. doi: 10.3969/j.issn.1000- 8519.2012.04.009. 陳琪, 熊博蒞, 陸軍, 等. 改進的二維Otsu圖像分割方法及其快速實現[J]. 電子與信息學報, 2010, 32(5): 1100-1104. doi: 10.3724/SP.J.1146.2009.00627. CHEN Qi, XIONG Boli, LU Jun, et al. Improved two- dimensional Otsu image segmentation method and fast recursive realization[J]. Journal of Electronics Information Technology, 2010, 32(5): 1100-1104. doi: 10.3724/SP.J.1146. 2009.00627. 賈同, 孟琭, 趙大哲, 等. 基于CT 圖像的自動肺實質分割方法[J]. 東北大學學報(自然科學版), 2008, 29(7): 965-968. doi: 10.3321/j. issn:1005-3026.2008.07.014. JIA Tong, MENG Lu, ZHAO Dazhe, et al. Automatic lung parenchyma segmentation on CT image[J]. Journal of Northeastern University (Natural Science), 2008, 29(7): 965-968. doi: 10.3321/j. issn:1005-3026.2008.07.014. 楊建峰, 趙涓涓, 強彥, 等. 結合區(qū)域生長的多尺度分水嶺算法的肺分割[J]. 計算機工程與設計, 2014, 35(1): 213-217. doi: 10.3969/j.issn.1000-7024.2014.01.040. YANG Jianfeng, ZHAO Juanjuan, QIANG Yan, et al. Lung CT Image segmentation combined multi-scale watershed method and region growing method[J]. Computer Engineering and Design, 2014, 35(1): 213-217. doi: 10.3969/ j.issn.1000-7024.2014.01.040. QIAN Y and WEI G. Lung nodule segmentation using EM algorithm[C]. Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2014: 20-23. 劉嘉, 王宏琦. 一種基于圖割的交互式圖像分割方法[J]. 電子與信息學報, 2008, 30(8): 1973-1976. LIU Jia and WANG Hongqi. A graph cuts based interactive image segmentation method[J]. Journal of Electronics Information Technology, 2008, 30(8): 1973-1976. DAI S, LU K, DONG J, et al. A novel approach of lung segmentation on chest CT images using graph cuts[J]. Neurocomputing, 2015, 168: 799-807. doi: 10.1016/j.neucom. 2015.05.044. 卞曉月, 武妍. 基于CT圖像的肺實質細分割綜合方法[J]. 重慶郵電大學學報(自然科學版), 2010, 22(5): 665-668. doi: 10.3979/j.issn.1673-825X.2010.05.028. BIAN Xiaoyue and WU Yan. A method of careful lung segmentation based on CT images[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(5): 665-668. doi: 10.3979/j.issn. 1673-825X.2010.05.028. SUDHA V and JAYASHREE P. Lung nodule detection in CT images using thresholding and morphological operations[J]. International Journal of Emerging Science and Engineering (IJESE), 2012, 1(2): 17-21. 張欣, 王兵, 楊穎, 等. 胸部CT圖像肺區(qū)域邊界凹陷自動修補[J]. 計算機工程與應用, 2013, 49(24): 191-194. doi: 10. 3778/j.issn.1002-8331.1202-0377. ZHANG Xin, WANG Bing, YANG Ying, et al. Automatic repair of lung boundary concave in chest CT images[J]. Computer Engineering and Applications, 2013, 49(24): 191-194. doi: 10.3778/j.issn.1002-8331.1202-0377. ZHOU S, CHENG Y, and Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images[J]. Biomedical Signal Processing and Control, 2014, 13: 62-70. doi: 10.1016/j.bspc.2014.03.010. 龔敬, 王麗嘉, 王遠軍. 基于灰度積分投影與模糊C均值聚類的肺實質分割[J]. 中國生物醫(yī)學工程學報, 2015, 34(1): 109-113. doi: 10.3969/j.issn.0258-8021.2015.01.015. GONG Jing, WANG Lijia, and WANG Yuanjun. Segmentation of lung parenchyma based on gray-level integrated projection and fuzzy C-Means clustering algorithm[J]. Chinese Journal of Biomedical Engineering, 2015, 34(1): 109-113. doi: 10.3969/j.issn.0258-8021.2015. 01.015. WEI Y, SHEN G, and LI J. A fully automatic method for lung parenchyma segmentation and repairing[J]. Journal of Digital Imaging, 2013, 26(3): 483-495. doi: 10.1007/s10278- 012-9528-9. 李金, 鄭冰, 梁洪, 等. 基于改進凸包算法的肺實質分割研究[J]. 中國生物醫(yī)學工程學報, 2013, 32(4): 484-490. doi: 10.3969/j.issn.0258-8021.2013.04.015. LI Jin, ZHENG Bing, LIANG Hong, et al. Segmentation research of pulmonary parenchyma based on improved convex hull algorithm[J]. Chinese Journal of Biomedical Engineering, 2013, 32(4): 484-490. doi: 10.3969/j.issn.0258-8021.2013. 04.015. -
計量
- 文章訪問數: 1762
- HTML全文瀏覽量: 282
- PDF下載量: 689
- 被引次數: 0