一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于3D區(qū)域增長法和改進的凸包算法相結合的全肺分割方法

代雙鳳 呂科 翟銳 董繼陽

代雙鳳, 呂科, 翟銳, 董繼陽. 基于3D區(qū)域增長法和改進的凸包算法相結合的全肺分割方法[J]. 電子與信息學報, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365
引用本文: 代雙鳳, 呂科, 翟銳, 董繼陽. 基于3D區(qū)域增長法和改進的凸包算法相結合的全肺分割方法[J]. 電子與信息學報, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365
DAI Shuangfeng, Lü Ke, ZHAI Rui, DONG Jiyang. Lung Segmentation Method Based on 3D Region Growing Method and Improved Convex Hull Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365
Citation: DAI Shuangfeng, Lü Ke, ZHAI Rui, DONG Jiyang. Lung Segmentation Method Based on 3D Region Growing Method and Improved Convex Hull Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365

基于3D區(qū)域增長法和改進的凸包算法相結合的全肺分割方法

doi: 10.11999/JEIT151365 cstr: 32379.14.JEIT151365
基金項目: 

國家自然科學基金(U1301251, 61271435),北京市自然科學基金(4141003)

Lung Segmentation Method Based on 3D Region Growing Method and Improved Convex Hull Algorithm

Funds: 

The National Natural Science Foundation of China (U1301251, 61271435), Beijing Natural Science Foundation (4141003)

  • 摘要: 肺實質分割結果的準確性在實際臨床應用中具有非常重要的意義。但由于肺結節(jié)的位置、大小、形狀的不規(guī)則性,肺部病變的多樣性,以及人體胸部解剖結構的明顯差異等,使得各類分割方法不能統(tǒng)一地適用于所有的胸部CT圖像,所以對于肺實質分割方法的研究仍具有很大的挑戰(zhàn)。該文在國內外研究分析的基礎上提出基于3D區(qū)域增長法與改進的凸包修補算法相結合的全肺分割方法。在3D區(qū)域增長法的粗分割基礎上,對分割的結果進行細化工作,通過連通域標記法與形態(tài)學方法相結合去除氣管和主支氣管,得到初步的肺實質掩膜,最后應用改進的凸包算法對肺部輪廓進行修補平滑,最終得到肺部分割結果。通過與凸包算法及滾球法相對比,證明該文所提改進的凸包算法能夠有效地修補肺部輪廓凹陷,修補后的結果分割精度較高。
  • MANSOOR A, BAGCI U, XU Z, et al. A generic approach to pathological lung segmentation[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2293-2310. doi: 10.1109/TMI. 2014.2384693.
    王娜娜, 陳樹越. 基于CT圖像的肺實質分割技術研究[J]. 電子測試, 2012(4): 38-43. doi: 10.3969/j.issn.1000-8519.2012. 04.009.
    WANG Nana and CHEN Shuyue. Research progress of lung parenchyma segmentation techniques based on CT images [J]. Electronic Test. 2012(4): 38-43. doi: 10.3969/j.issn.1000- 8519.2012.04.009.
    陳琪, 熊博蒞, 陸軍, 等. 改進的二維Otsu圖像分割方法及其快速實現[J]. 電子與信息學報, 2010, 32(5): 1100-1104. doi: 10.3724/SP.J.1146.2009.00627.
    CHEN Qi, XIONG Boli, LU Jun, et al. Improved two- dimensional Otsu image segmentation method and fast recursive realization[J]. Journal of Electronics Information Technology, 2010, 32(5): 1100-1104. doi: 10.3724/SP.J.1146. 2009.00627.
    賈同, 孟琭, 趙大哲, 等. 基于CT 圖像的自動肺實質分割方法[J]. 東北大學學報(自然科學版), 2008, 29(7): 965-968. doi: 10.3321/j. issn:1005-3026.2008.07.014.
    JIA Tong, MENG Lu, ZHAO Dazhe, et al. Automatic lung parenchyma segmentation on CT image[J]. Journal of Northeastern University (Natural Science), 2008, 29(7): 965-968. doi: 10.3321/j. issn:1005-3026.2008.07.014.
    楊建峰, 趙涓涓, 強彥, 等. 結合區(qū)域生長的多尺度分水嶺算法的肺分割[J]. 計算機工程與設計, 2014, 35(1): 213-217. doi: 10.3969/j.issn.1000-7024.2014.01.040.
    YANG Jianfeng, ZHAO Juanjuan, QIANG Yan, et al. Lung CT Image segmentation combined multi-scale watershed method and region growing method[J]. Computer Engineering and Design, 2014, 35(1): 213-217. doi: 10.3969/ j.issn.1000-7024.2014.01.040.
    QIAN Y and WEI G. Lung nodule segmentation using EM algorithm[C]. Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2014: 20-23.
    劉嘉, 王宏琦. 一種基于圖割的交互式圖像分割方法[J]. 電子與信息學報, 2008, 30(8): 1973-1976.
    LIU Jia and WANG Hongqi. A graph cuts based interactive image segmentation method[J]. Journal of Electronics Information Technology, 2008, 30(8): 1973-1976.
    DAI S, LU K, DONG J, et al. A novel approach of lung segmentation on chest CT images using graph cuts[J]. Neurocomputing, 2015, 168: 799-807. doi: 10.1016/j.neucom. 2015.05.044.
    卞曉月, 武妍. 基于CT圖像的肺實質細分割綜合方法[J]. 重慶郵電大學學報(自然科學版), 2010, 22(5): 665-668. doi: 10.3979/j.issn.1673-825X.2010.05.028.
    BIAN Xiaoyue and WU Yan. A method of careful lung segmentation based on CT images[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(5): 665-668. doi: 10.3979/j.issn. 1673-825X.2010.05.028.
    SUDHA V and JAYASHREE P. Lung nodule detection in CT images using thresholding and morphological operations[J]. International Journal of Emerging Science and Engineering (IJESE), 2012, 1(2): 17-21.
    張欣, 王兵, 楊穎, 等. 胸部CT圖像肺區(qū)域邊界凹陷自動修補[J]. 計算機工程與應用, 2013, 49(24): 191-194. doi: 10. 3778/j.issn.1002-8331.1202-0377.
    ZHANG Xin, WANG Bing, YANG Ying, et al. Automatic repair of lung boundary concave in chest CT images[J]. Computer Engineering and Applications, 2013, 49(24): 191-194. doi: 10.3778/j.issn.1002-8331.1202-0377.
    ZHOU S, CHENG Y, and Tamura S. Automated lung segmentation and smoothing techniques for inclusion of juxtapleural nodules and pulmonary vessels on chest CT images[J]. Biomedical Signal Processing and Control, 2014, 13: 62-70. doi: 10.1016/j.bspc.2014.03.010.
    龔敬, 王麗嘉, 王遠軍. 基于灰度積分投影與模糊C均值聚類的肺實質分割[J]. 中國生物醫(yī)學工程學報, 2015, 34(1): 109-113. doi: 10.3969/j.issn.0258-8021.2015.01.015.
    GONG Jing, WANG Lijia, and WANG Yuanjun. Segmentation of lung parenchyma based on gray-level integrated projection and fuzzy C-Means clustering algorithm[J]. Chinese Journal of Biomedical Engineering, 2015, 34(1): 109-113. doi: 10.3969/j.issn.0258-8021.2015. 01.015.
    WEI Y, SHEN G, and LI J. A fully automatic method for lung parenchyma segmentation and repairing[J]. Journal of Digital Imaging, 2013, 26(3): 483-495. doi: 10.1007/s10278- 012-9528-9.
    李金, 鄭冰, 梁洪, 等. 基于改進凸包算法的肺實質分割研究[J]. 中國生物醫(yī)學工程學報, 2013, 32(4): 484-490. doi: 10.3969/j.issn.0258-8021.2013.04.015.
    LI Jin, ZHENG Bing, LIANG Hong, et al. Segmentation research of pulmonary parenchyma based on improved convex hull algorithm[J]. Chinese Journal of Biomedical Engineering, 2013, 32(4): 484-490. doi: 10.3969/j.issn.0258-8021.2013. 04.015.
  • 加載中
計量
  • 文章訪問數:  1762
  • HTML全文瀏覽量:  282
  • PDF下載量:  689
  • 被引次數: 0
出版歷程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-09-19

目錄

    /

    返回文章
    返回