基于似圓陰影的光學遙感圖像油罐檢測
doi: 10.11999/JEIT151334 cstr: 32379.14.JEIT151334
-
2.
(長春理工大學電子信息工程學院 長春 130022) ②(中國科學院國家空間科學中心復雜航天系統(tǒng)電子信息技術(shù)重點實驗室 北京 100190)
基金項目:
國家973計劃(613192)
Oil Tank Detection in Optical Remote Sensing Imagery Based on Quasi-circular Shadow
-
2.
(School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China)
Funds:
The National 973 Program of China (613192)
-
摘要: 針對光學遙感圖像中受陰影干擾的油罐目標識別率低的問題,該文提出一種將改進的視覺顯著模型與似圓陰影區(qū)域特征檢測相結(jié)合的由粗到精的油罐目標檢測方法。首先建立改進的視覺顯著模型,將油罐從復雜背景中粗分離。然后對分離結(jié)果中由油罐產(chǎn)生的似圓陰影區(qū)域進行精檢測,得到疑似油罐目標。再去除陰影,獲得油罐目標的初步檢測結(jié)果。最后基于圖搜索策略及先驗知識,確定油罐目標并定位油庫區(qū)域。實驗結(jié)果表明,該方法對檢測光學遙感圖像中存在似圓陰影的油罐目標具有較高的魯棒性和準確率。同時,在不同環(huán)境的光學遙感圖像中使用該方法可快速準確地定位油庫區(qū)域。
-
關(guān)鍵詞:
- 光學遙感圖像 /
- 似圓陰影區(qū)域 /
- 視覺顯著模型 /
- 特征檢測 /
- 油罐
Abstract: To deal with the issue of low oil tanks recognition rate in optical remote sensing image, an improved oil tanks detection method is proposed, which is based on the improved visual saliency model and quasi-circular shadow region. Firstly, the oil tanks are separated from the complex background by using the improved visual saliency model. Secondly, the circular shadow regions are finely detected, and the suspected oil tanks are obtained. Then, the shadow region and the preliminary detection result of oil tanks are obtained. Finally, the false oil tank targets are removed and oil depots are determined based on graph search strategy and prior knowledge. The proposed method is robust to the oil tanks in the optical remote sensing images, and can effectively detect the oil tanks in high recognition rate. The experimental results indicate that the proposed algorithm are fast and accurate to detect the oil tanks, which is suitable for optical remote sensing images of different spatial resolutions. -
XU Huaping, CHEN Wei, SUN Bing, et al. Oil tank detection in synthetic aperture radar images based on quasi-circular shadow and highlighting arcs[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083689. 陳愛軍, 李金宗. 衛(wèi)星遙感圖像中類圓形油庫的自動識別方法[J]. 光電工程, 2006, 33(9): 96-100. CHEN Aijun and LI Jinzong. Automatic recognition method for quasi-circular oil depots in satellite remote sensing images[J]. Opto-Electronic Engineering, 2006, 33(9): 96-100. 李斌, 尹東, 袁勛, 等. 改進的Hough變換對油庫目標識別[J]. 光電工程, 2008, 35(3): 31-33. LI Bin, YIN Dong, YUAN Xun, et al. Oilcan recognition method based on improved gough transform[J]. Opto- Electronic Engineering, 2008, 35(3): 31-33. 韓現(xiàn)偉, 付宜利, 李剛. 基于改進Hough變換和圖搜索的油庫目標識別[J]. 電子與信息學報, 2011, 33(1): 66-72. doi: 10.3724/SP.J.1146.2010.00112. HAN Xianwei, FU Yili, and LI Gang. Oil depots recognition based on improved Hough transform and graph search[J]. Journal of Electronics Information Technology, 2011, 33(1): 66-72. doi: 10.3724/SP.J.1146.2010.00112. HAN Xianwei and FU Yili. Circular array targets detection from remote sensing images based on saliency detection[J]. Optical Engineering, 2012, 51(2): 026201. YAO Yuan, JIANG Zhiguo, and ZHANG Haopeng. Oil tank detection based on salient region and geometric features[J]. Proceedings of the SPIE, 2014, 9273. doi: 10.1117/12.2072839. CAI Xiaoyu, SUI Haigang, LV Ruipeng, et al. Automatic circular oil tank detection in high-resolution optical image based on visual saliency and Hough transform[C]. IEEE Workshop on Electronics, Computer and Applications, Ottawa, Canada, 2014: 408-411. ZHU Chenxian, LIU Bin, ZHOU Yuhao, et al. Framework design and implementation for oil tank detection in optical satellite imagery[C]. IEEE International Geography and Remote Sensing (IGARSS), Munich, Germany, 2012: 6016-6019. KUSHWAHA N K, CHAUDHURI D, and SINGH M P. Automatic bright circular type oil tank detection using remote sensing images[J]. Defence Science Journal, 2013, 63(3): 298-304. ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency- tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 1597-1604. CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582. DUDA R O and HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Graphics and Image Processing, 1972, 15(1): 11-15. VIORICA P, GURDJOS P, and GIOI R G V. A parameterless line segment and elliptical arc detector with enhanced ellipse fitting[C]. Springer-Verlag, European Conference on Computer Vision (ECCV 2012), Berlin, Heidelberg, Part II, 2012: 572-585. DESOLNEUX A, MOISAN L, and MOREL J M. From Gestalt Theory to Image Analysis: A Probabilistic Approach [M]. New York: Springer Science, USA, 2008: 33-40. GIOI R G V, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732. Ok A O. A new approach for the extraction of aboveground circular structures from near-nadir VHR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3125-3140. Ok A O and EMRE B. Automated detection of oil depots from high resolution images: A new perspective[C]. Remote Sensing and Spatial Information Sciences, Munich, Germany, 2015: 149-156. KAPUR J N, PRASANNA S, and WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision Graphics and Image Processing, 1985, 29(3): 273-285. -
計量
- 文章訪問數(shù): 1739
- HTML全文瀏覽量: 230
- PDF下載量: 608
- 被引次數(shù): 0