面向復(fù)雜電磁環(huán)境的多天線信道估計技術(shù)
doi: 10.11999/JEIT151316 cstr: 32379.14.JEIT151316
-
2.
(電子科技大學(xué)通信抗干擾國家級重點(diǎn)實(shí)驗(yàn)室 成都 610054) ②(信息感知技術(shù)協(xié)同創(chuàng)新中心 西安 710071)
國家863計劃(2015AA8098083C),國家自然科學(xué)基金(61471100, 61101090),中央高?;?ZYGX2015J012)
Multiple Antenna Channel Estimation Technology in Complex Electromagnetic Environment
-
2.
(National Communication Laboratory, University of Electronic Science and Technology of China, Chengdu 610054, China)
The National 863 Program of China (2015AA8098083C), The National Natural Science Foundation of China (61471100, 61101090), The Fundamental Research Funds for the Central Universities (ZYGX2015J012)
-
摘要: 對于基于認(rèn)知無線電架構(gòu)的多天線信道估計技術(shù),由于傳統(tǒng)零相關(guān)序列是在全部頻譜可用前提下設(shè)計的,在復(fù)雜電磁環(huán)境的頻譜限制下,傳統(tǒng)零相關(guān)序列部分頻域元素發(fā)生變化,且不再滿足原始序列的周期相關(guān)特性,因此不能直接應(yīng)用于復(fù)雜電磁環(huán)境的多天線信道估計。該文介紹了多天線通信系統(tǒng)的信道估計算法并指出對理想序列的要求,然后針對復(fù)雜電磁環(huán)境,即在存在頻譜空穴的條件下,聯(lián)合優(yōu)化頻譜受限和良好周期相關(guān)程度兩大評價指標(biāo),設(shè)計出適用的序列集合,作為訓(xùn)練序列應(yīng)用到認(rèn)知無線電系統(tǒng)的信道估計算法中,仿真結(jié)果驗(yàn)證了新序列集合的有效性。
-
關(guān)鍵詞:
- 多天線信道估計 /
- 復(fù)雜電磁環(huán)境 /
- 頻譜受限 /
- 序列設(shè)計
Abstract: For channel estimation technology of multiple antenna communication system based on cognitive radio architecture, traditional zero correlation zone sequences (which assume the availability of the entire spectral band) can not be used because their orthogonality will be destroyed by the spectrum hole constraint. This paper introduces the channel estimation algorithm in multiple antenna communication system and points out the requirement of the ideal sequence set, then on complex electromagnetic environment, i.e., under the condition of the existence of spectrum holes, joints optimization evaluation indexes of limited spectrum and good cycle correlation degree, designs a suitable sequence set, which can be applied to the channel estimation algorithm of cognitive radio system. The simulation results verify the effectiveness of the new sequence set. -
MITOLA J. Cognitive radio-making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. 魏奇. 基于認(rèn)知無線電抗干擾技術(shù)分析[J]. 無線電通信技術(shù), 2011, 37(4): 56-58. WEI Qi. Analysis based on cognitive radio anti-interference techniques[J]. Radio Communication Technology, 2011, 37(4): 56-58. 龔樹平. 無線區(qū)域網(wǎng)與認(rèn)知無線電中的信道估計技術(shù)研究[D]. [碩士論文], 電子科技大學(xué), 2007. GONG Shuping. Channel estimation technology research in the wireless area network and cognitive radio[D]. [Master dissertaion], University of Electronic Science and Technology of China, 2007. HU Su, LIU Zilong, and Guan Yongliang. Sequence design for cognitive CDMA communications under arbitrary spectrum hole constraint[J] . IEEE Transactions on Communications, 2014, 32(11): 1974-1986. 胡蘇, 唐萬斌, 王軍. 變換域通信系統(tǒng)[M]. 北京: 國防工業(yè)出版社, 2015: 60-85. HU Su, TANG Wanbin, and WANG Jun. Transform Domain Communication System[M]. Beijing: National Defence Industry Press, 2015: 60-85. AKIN S and GURSOY M C. Performance analysis of cognitive radio systems with imperfect channel sensing and estimation[J]. IEEE Transactions on Communications, 2015, 63(5): 1554-1566. KIM Hyun Myung, KIM Dongsik, and KIM Tae Kyoung. Frequency domain channel estimation for MIMO SC-FDMA systems with CDM pilots[J]. The Journal of Communications and Networks, 2014, 16(4): 447-457. OROZE LUGO A G, LARA M M, and MCLEMON D C. Channel estimation using implicit training[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 240-254. ZHANG Peichang, CHEN Sheng, and HANZO L. Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection[J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 122-137. HE Hao, LI Jian, and PETRE S. Waveform Design For Active Sensing Systems[M]. UK, Cambridge University Press, 2012: 74-80. SONG Junxiao, PRABHU B, and DANIEL P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3998-4009. SCUTARI G, FACCHINEI F, and SONG P. Decomposition by partial linearization: parallel optimization of multi-agent systems[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 641-656. SOLTANALIAN M and STOICA P. Designing unimodular codes via quadratic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1221-1234. LUSS R and TEBOULLE M. Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint[J]. SIAM Review, 2013, 55(1): 65-98. TSAI L S, CHUNG W H, and SHIU D S. Syntehsizing low autocorrelation and low PAPR OFDM sequences under spectral constraints through convex optimization and GS algorithm[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2234-2243. HU Su, GUOAN Bi, and GUAN Yongliang. TDCS-based cognitive radio networks with multiuser interference avoidance[J]. IEEE Transactions on Communications, 2013, 61(12): 4828-4835. TSAI L S, CHUNG W H, and SHIU D S. Lower bounds on the correlation property for OFDM sequences with spectral-null constraints[J]. IEEE Transactions on Wireless Communications, 2011, 10(8): 2652-2659. TANG X, FAN P, and MATSUFUJI S. Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J]. Electron Letters, 2000, 36(6): 551-552. WELCH L R. Lower bounds on the maximum cross correlation of signals[J]. IEEE Transactions on Information Theory, 1974, 20(3): 397-399. SARWATE D V. Bounds on cross correlation and autocorrelation of sequences[J]. IEEE Transactions on Information Theory, 1979, 25(6): 720-724. -