無線傳感網(wǎng)中移動式蠕蟲的抑制與清理
doi: 10.11999/JEIT151311 cstr: 32379.14.JEIT151311
-
1.
(華僑大學計算機科學與技術(shù)學院 廈門 361021) ②(迪肯大學信息技術(shù)學院 澳大利亞墨爾本 VIC3125)
國家自然科學基金(61572206, 61202468, 61305085, 61370007, U1536115),福建省自然科學基金計劃資助項目(2014J01240),華僑大學研究生科研創(chuàng)新能力培育計劃資助項目(1400214020)
The Inhibition and Clearup of the Mobile Worm in Wireless Sensor Networks
-
1.
(College of Computer Science &
-
2.
(Institute of Information Technology, Deakin University, Melbourne VIC3125, Australia)
The National Natural Science Foundation of China (61572206, 61202468, 61305085, 61370007, U1536115), The Project Supported by The Natural Science Foundation of Fujian Province, China (2014J01240), The Project Supported by Graduate Student Research and Innovation Ability Cultivation Plan Funded Projects of Huaqiao University (1400214020)
-
摘要: 在無線傳感器網(wǎng)絡(luò)(Wireless Sensor Networks, WSNs)中引入移動節(jié)點可以極大地提升網(wǎng)絡(luò)性能。然而,移動節(jié)點一旦被蠕蟲感染則會大大加快蠕蟲在WSNs中的傳播。針對這一新的研究問題,該文分2步來抑制和清理移動蠕蟲傳播源。首先建立了移動蠕蟲感染模型,設(shè)計啟發(fā)式算法以確定移動感染區(qū)域的邊界,通過掛起感染邊界附近的高風險節(jié)點來阻斷蠕蟲的進一步傳播。第2步設(shè)計定向擴散的良性蠕蟲對網(wǎng)絡(luò)中被感染的節(jié)點進行修復,以徹底清除蠕蟲病毒。理論分析和仿真實驗結(jié)果均表明,該文所提方法能夠在付出較小的代價下達到較好的移動蠕蟲清理效果,適合能量受限的無線傳感器網(wǎng)絡(luò)。
-
關(guān)鍵詞:
- 無線傳感器網(wǎng)絡(luò) /
- 移動蠕蟲傳播源 /
- 感染邊界 /
- 良性蠕蟲
Abstract: The network performance of WSNs (Wireless Sensor Networks) can be improved significantly by injecting mobile elements. However, the infection process of worm will be greatly accelerated once the mobile element has been captured and become the new infection source. To cope with this new threat, this paper first proposes the infection model for the networks with the mobile worm and designs a heuristic algorithm to identify the boundary of infected area. High risk nodes near the boundary can be found and switched to sleeping states to block the further spreading of the worm. Second, an algorithm with directed-diffusion based anti-worm is designed to repair those infected sensors. Theoretical analysis and experimental results show that the proposed methods can achieve better worm cleaning effect with low cost, which can be applied to energy-limited wireless sensor networks. -
MISHRA B K and KESHRI N. Mathematical model on the transmission of worms in wireless sensor networks[J]. Applied Mathematical Modeling, 2013, 37(6): 4103-4111. doi: 10.1016/j.apm.2012.09.025. BUTUN I, MORGERA S D, and SANKAR R. A survey of intrusion detection systems in wireless sensor networks[J]. Communications Surveys Tutorials, 2014, 16(1): 266-282. doi: 10.1109/SURV.2013.050113.00191. MISHRA B K and TYAGI I. Defending against malicious threats in wireless Sensor network: A mathematical model[J]. International Journal of Information Technology and Computer Science, 2014, 6(3): 12-19. doi: 10.5815/ijitcs. 2014.03.02. WANG T, PENG Z, CHEN Y, et al. Continuous tracking for mobile targets with mobility nodes in WSNs[C]. 2014 International Conference on Smart Computing (SMARTCOMP), Hong Kong, 2014: 261-268. doi: 10.1109/ SMARTCOMP.2014.7043867. DI FRANCESCO M, DAS S K, and ANASTASI G. Data collection in wireless sensor networks with mobile elements: A survey[J]. ACM Transactions on Sensor Networks, 2011, 8(1): 7-38. doi: 10.1145/1993042.1993049. PENG Z, WANG T, BHUIYAN M Z A, et al. Dependable cascading target tracking in heterogeneous mobile camera sensor networks[C]. Algorithms and Architectures for Parallel Processing, Springer International Publishing, Zhangjiajie, 2015: 531-540. doi: 10.1007/978-3-319-27161-3_48. WANG T, PENG Z, LIANG J, et al. Detecting targets based on a realistic detection and decision model in wireless sensor networks[C]. Wireless Algorithms, Systems, and Applications, Springer International Publishing, Qufu, China, 2015: 836-844. doi: 10.1007/978-3-319-21837-3_82. WEN S, ZHOU W, ZHANG J, et al. Modeling propagation dynamics of social network worms[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(8): 1633-1643. doi: 10.1109/TPDS.2012.250. ZHOU H Y, LUO D Y, GAO Y, et al. Modeling of node energy consumption for wireless sensor networks[J]. Wireless Sensor Network, 2011, 3(1): 18-23. doi: 10.4236/wsn. 2011.31003. SHEN S, LI H, HAN R, et al. Differential game-based strategies for preventing malware propagation in wireless sensor networks[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(11): 1962-1973. doi: 10.1109/TIFS.2014.2359333. ZHAO T, ZHANG G, and ZHANG L. An overview of mobile devices security issues and countermeasures[C]. 2014 International Conference on Wireless Communication and Sensor Network (WCSN), Wuhan, 2014: 439-443. doi: 10.1109/wcsn.2014.95. CASTANEDA F, SEZER E C, and XU J. Worm vs. worm: preliminary study of an active counter-attack mechanism[C]. Proceedings of the 2004 ACM workshop on Rapid malcode, New York, USA, 2004: 83-93. doi: 10.1145/1029618.1029631. YANG Y, ZHU S, and CAO G. Improving sensor network immunity under worm attacks: a software diversity approach[C]. Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, New York, USA, 2008: 149-158. doi: 10.1145/1374618. 1374640. -
計量
- 文章訪問數(shù): 1191
- HTML全文瀏覽量: 122
- PDF下載量: 475
- 被引次數(shù): 0