基于多維資源自適應(yīng)分配的協(xié)作認(rèn)知傳輸機制
doi: 10.11999/JEIT151286 cstr: 32379.14.JEIT151286
基金項目:
國家自然科學(xué)基金(61401354, 61401320, 61501285, 61102057), 高等學(xué)校引智計劃基金(B08038)
Cooperative Cognitive Transmission Scheme Based on Adaptive Multi-dimensional Resource Allocation
Funds:
The National Natural Science Foundation of China (61401354, 61401320, 61501285, 61102057), The 111 Project (B08038)
-
摘要: 該文針對協(xié)作認(rèn)知無線電網(wǎng)絡(luò)提出一種時域、頻域和空域資源聯(lián)合分配的傳輸機制,在改善授權(quán)用戶傳輸性能的前提下使參與協(xié)作的認(rèn)知用戶獲得合理的回報。所提機制利用多天線認(rèn)知節(jié)點擔(dān)任中繼,通過自適應(yīng)的時隙劃分與帶寬分配,對兩跳傳輸鏈路中的瓶頸予以消除;并在包含多個協(xié)作認(rèn)知用戶的場景中,給出一種考慮公平性的中繼選擇算法。該方法一方面采用比例公平的思想實現(xiàn)認(rèn)知用戶間的公平性,另一方面通過調(diào)整獎勵因子,使中繼獲得合理的回報。仿真結(jié)果表明,所提算法能夠改善授權(quán)與認(rèn)知系統(tǒng)的數(shù)據(jù)速率,同時給予認(rèn)知中繼公平的回報。
-
關(guān)鍵詞:
- 協(xié)作認(rèn)知無線電網(wǎng)絡(luò) /
- 資源分配 /
- 自適應(yīng) /
- 中繼選擇 /
- 公平
Abstract: A transmission mechanism based on the joint management of time, frequency and space domain resources is proposed in the Cooperative Cognitive Radio Network (CCRN), with which the cooperative cognitive users can obtain proper reward under the premise of improving the primary users transmission. The proposed scheme employs multi-antenna cognitive user as a relay. Via adaptive time-slot and bandwidth allocation, bottleneck in the two-hop transmission can be eliminated. Furthermore, a relay selection algorithm taking fairness into account is given for the situation where multiple cooperative cognitive users exist. On one hand, the relay selection utilizes proportional fair to achieve inter-cognitive-user fairness. On the other hand, proper reward is determined by adjusting the incentive factor. Simulation results show that the proposed mechanism can improve the data rate of both primary and cognitive systems, and afford fair reward to the cognitive relays.-
Key words:
- Cooperative Cognitive Radio Network (CCRN) /
- Resource allocation /
- Adaptive /
- Relay selection /
- Fairness
-
MITOLA J and MAGUIRE G Q J. Cognitive radios: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210. BHUTE Y and RAUT A R. A survey on relay selection strategies in cooperative wireless network for capacity enhancement[J]. International Journal of Computer Applications, 2013, 65(25): 12-17. CHEN X, CHEN H, and MENG W. Cooperative communications for cognitive radio networks from theory to applications[J]. IEEE Communications Surveys Tutorials, 2014, 16(3): 1180-1192. doi: 10.1109/SURV.2014. 021414.00066. FENG X, WANG H, and WANG X. A game approach for cooperative spectrum sharing in cognitive radio networks[J]. Wireless Communications and Mobile Computing, 2015, 15(3): 538-551. doi: 10.1002/wcm.2364. JING T, ZHU S, LI H, et al. Cooperative relay selection in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1872-1881. doi: 10.1109/INFCOM. 2013.6566758. SU W, MATYJAS J D, and BATALAMA S. Active cooperation between primary users and cognitive radio users in cognitive ad-hoc networks[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010: 3174-3177. doi: 10.1109/ ICASSP.2010.5496070. LI W, CHENG X, JING T, et al. Cooperative multi-hop relaying via network formation games in cognitive radio networks[C]. IEEE International Conference on Computer Communications (INFOCOM), Turin, Italy, 2013: 971-979. doi: 10.1109/INFCOM.2013.6566886. KIM J, CHOI W, NAM S, et al. An efficient prewhitening scheme for MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1934-1939. doi: 10.1109/TVT.2013.2290039. HUA S, LIU H, ZHUO X, et al. Exploiting multiple antennas in cooperative cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3318-3330. doi: 10.1109/TVT.2013.2297438. QIAN L P, WU Y, and CHEN Q. Transmit power minimization for outage-constrained relay selection over Rayleigh-fading channels[J]. IEEE Communications Letters, 2014, 18(8): 1383-1386. doi: 10.1109/LCOMM.2014.2332163. ZHONG C, SURAWEERA H A, ZHENG G, et al. Wireless information and power transfer with full duplex relaying[J]. IEEE Transactions on Communications, 2014, 62(10): 3447-3461. doi: 10.1109/TCOMM.2014.2357423. NAJAFI M, ARDEBILIPOUR M, SOLEIMANI-NASAB E, et al. Multi-hop cooperative communication technique for cognitive DF and AF relay networks[J]. Wireless Personal Communications, 2015, 83(4): 3209-3221. doi: 10.1007/ s11277-015-2590-0. JALALI A, PADOVANI R, and PANKAJ R. Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system[C]. IEEE Vehicular Technology Conference (VTC), Tokyo, Japan, 2000: 1854-1858. doi: 10.1109/VETECS.2000.851593. SIGDEL S and KRZYMIEN W A. Simplified fair scheduling and antenna selection algorithms for multiuser MIMO orthogonal space-division multiplexing downlink[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1329-1344. doi: 10.1109/TVT.2008.925002. GAST S Matthew. 802.11ac: A Survival Guide[M]. Sebastopol: OReilly Media Inc, 2013: 93-94. GHOSH A, RATASUK R, MONDAL B, et al. LTE-Advanced: next-generation wireless broadband technology[J]. IEEE Communications Magazine, 2010, 17(3): 10-22. doi: 10.1109/ MWC.2010.5490974. SOUIHLI O and OHTSUKI T. Joint feedback and scheduling scheme for service-differentiated multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 528-533. doi: 10.1109/TWC.2010.02.090212. -
計量
- 文章訪問數(shù): 1231
- HTML全文瀏覽量: 109
- PDF下載量: 314
- 被引次數(shù): 0