一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于自然統(tǒng)計特征分布的無參考圖像質量評價

陳勇 帥鋒 樊強

陳勇, 帥鋒, 樊強. 基于自然統(tǒng)計特征分布的無參考圖像質量評價[J]. 電子與信息學報, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
引用本文: 陳勇, 帥鋒, 樊強. 基于自然統(tǒng)計特征分布的無參考圖像質量評價[J]. 電子與信息學報, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
CHEN Yong, SHUAI Feng, FAN Qiang. A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
Citation: CHEN Yong, SHUAI Feng, FAN Qiang. A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058

基于自然統(tǒng)計特征分布的無參考圖像質量評價

doi: 10.11999/JEIT151058 cstr: 32379.14.JEIT151058
基金項目: 

國家自然科學基金(60975008),重慶市教委科學技術研究項目(KJ1400434)

A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics

Funds: 

The National Natural Science Foundation of China (60975008), Science and Technology Research Project of Chongqing Education Committee (KJ1400434)

  • 摘要: 針對目前的無參考評價方法無法準確反映人類對圖像質量的視覺感知效果,該文提出一種基于自然統(tǒng)計特征分布(DIstribution Characteristics of Natural, DICN)的無參考圖像質量評價方法。其原理是用小波變換將圖像分解為低頻子帶和高頻子帶部分,再將高頻子帶部分分成 的小塊,提取每一子塊的幅值和信息熵,并分別計算其分布直方圖均值和斜度作為特征,利用支持向量回歸思想對特征進行訓練,建立5種不同失真類型的質量預測模型。在此基礎上,采用支持向量機針對圖像特征構造分類器并進行失真判斷以確定不同失真的權重,結合5種失真評價模型可得到自然統(tǒng)計特征分布的無參考評價模型。實驗結果分析表明,該算法的評價效果優(yōu)于現有的經典算法,與主觀評價具有較好一致性,能夠準確反映人類對圖像質量的視覺感知效果。
  • REDZUAN A M and LING Shao. Non-distortion-specific no-reference image quality assessment: a survey[J]. Information Sciences, 2015, 301(4): 141-160. doi: 10.1016/ j.ins.2014.12.055.
    賈惠珍, 孫權森, 王同罕. 結合感知特征和自然場景統(tǒng)計的無參考圖像質量評價[J]. 中國圖象圖形學報, 2014, 19(6): 859-867. doi: 10.11834/jig.20140606.
    JIA Huizhen, SUN Quansen, and WANG Tonghan. Blind image quality assessment based on perceptual features and natural scene statistics[J]. Journal of Image and Graphics, 2014, 19(6): 859-867. doi: 10.11834/jig.20140606.
    MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516. doi: 10.1109/LSP. 2010.2043888.
    MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364. doi: 10.1109/TIP.2011.2147325.
    HE L, TAO D, LI X, et al. Sparse representation for blind image quality assessment[C]. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Rhode Island, 2012: 1146-1153. doi: 10.1109/CVPR.2012.6247795.
    金波, 李朝鋒, 吳小俊. 結合NSS和小波變換的無參考圖像質量評價[J]. 中國圖象圖形學報, 2012, 17(1): 33-39.
    JIN Bo, LI Chaofeng, and WU Xiaojun. No-reference image quality assessment based on natural scene statistics and wavelet[J]. Journal of Image and Graphics, 2012, 17(1): 33-39.
    SAAD M A, BOVIK A C, and CHARRIER C. DCT statistics model-based blind image quality assessment[C]. IEEE International Conference on Image Processing, Brussels, Belgium, 2011: 3093-3096. doi: 10.1109/ICIP.2011.6116319.
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/TIP.2012.2214050.
    MITTAL A, SOUNDARARAN R, and BOVIK A C. Making a completely blind image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. doi: 10.1109/ LSP.2012.2227726.
    蔣剛毅, 黃大江, 王旭, 等. 圖像質量評價方法研究進展[J]. 電子與信息學報, 2010, 32(1): 219-226. doi: 10.3724/SP.J. 1146.2009.00091.
    JIANG Gangyi, HUANG Dajiang, and WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics Information Technology, 2010, 32(1): 219-226. doi: 10.3724/SP.J.1146.2009.00091.
    VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. doi: 10.1109/72.788640.
    付曉薇, 代蕓, 陳黎, 等. 基于局部熵的量子衍生醫(yī)學超聲圖像去斑[J]. 電子與信息學報, 2015, 37(3): 560-566. doi: 10. 11999/JEIT140587.
    FU Xiaowei, DAI Yun, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics Information Technology, 2015, 37(3): 560-566. doi: 10.11999/JEIT140587.
    LIU Lixiong, LIU Bao, HUANG Hua, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. IEEE Transactions on Signal Processing: Image Communication, 2014, 29(8): 856-863. doi: 10.1016/j.image. 2014.06.006.
    SCHLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245. doi: 10.1162/089976600300015565.
    周曉劍. 考慮梯度信息的支持向量回歸機[J]. 自動化學報, 2014, 40(12): 2908-2915. doi: 10.3724/SP.J.1004.2014.02908.
    ZHOU Xiaojian. Enhancingsupport vector regression with gradient information[J]. Acta Automatica Sinica, 2014, 40(12): 2908-2915. doi: 10.3724/SP.J.1004.2014.02908.
    張繼紅, 鄭俊生. 多元再生核徑向基函數研究[J]. 大連交通大學學報, 2015, 36(1): 109-117. doi: 10.13291/j.cnki.djdxac. 2015.01.029.
    ZHANG Jihong and ZHENG Junsheng. Study of multivariate reproducing kernel radial basis function[J]. Journal of Dalian Jiaotong University, 2015, 36(1): 109-117. doi: 10.13291/ j.cnki.djdxac.2015.01.029.
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. doi: 10.1109/TIP.2005.859378.
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. doi: 10.1109/TIP.2005. 859389.
  • 加載中
計量
  • 文章訪問數:  1355
  • HTML全文瀏覽量:  113
  • PDF下載量:  629
  • 被引次數: 0
出版歷程
  • 收稿日期:  2015-09-14
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-07-19

目錄

    /

    返回文章
    返回