無(wú)陷門格基簽密方案
doi: 10.11999/JEIT151044 cstr: 32379.14.JEIT151044
國(guó)家自然科學(xué)基金(61300181, 61502044, 61402015, U1404601, 11471104),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金 (2015RC23),河北省教育廳青年基金(QN2015084),廊坊市科技局項(xiàng)目(2015011063),廊坊師范學(xué)院博士基金(LSLB201408)
A Lattice-based Signcryption Scheme Without Trapdoors
The National Natural Science Foundation of China (61300181, 61502044, 61402015, U1404601, 11471104), The Fundamental Research Funds for the Central Universities (2015RC23), Hebei Province Education Funds for Youth Project (QN2015084), Langfang Municipal Science and Technology Support Program (2015011063), Langfang Teachers University Doctor Funds (LSLB201408)
-
摘要: 現(xiàn)有的格基簽密方案以陷門產(chǎn)生算法和原像取樣算法為核心算法。但是,這兩個(gè)算法都很復(fù)雜,運(yùn)算量較大,嚴(yán)重影響格基簽密方案的執(zhí)行效率。該文運(yùn)用無(wú)陷門格基簽名及其簽名壓縮技術(shù),結(jié)合基于帶錯(cuò)學(xué)習(xí)問(wèn)題的加密方法,提出第1個(gè)基于格理論的、不依賴于陷門產(chǎn)生算法和原像取樣算法的簽密方案。方案在帶錯(cuò)學(xué)習(xí)問(wèn)題和小整數(shù)解問(wèn)題的難解性假設(shè)下,達(dá)到了自適應(yīng)選擇密文攻擊下的不可區(qū)分性和自適應(yīng)選擇消息攻擊下的不可偽造性。方案在抗量子攻擊的同時(shí),保證了較高的執(zhí)行效率。
-
關(guān)鍵詞:
- 基于格的密碼學(xué) /
- 簽密 /
- 無(wú)陷門格基簽名 /
- 帶錯(cuò)學(xué)習(xí)問(wèn)題 /
- 小整數(shù)解問(wèn)題
Abstract: The existing lattice-based signcryption schemes are based on trapdoor generation algorithm and preimage sample algorithm. However, both algorithms are complex, require a lot of time to run, and affect the efficiency of latticed-based signcryption schemes deeply. To solve this problem, the first lattice-based signcryption scheme without trapdoor generation algorithm and preimage sample algorithm is proposed, with the help of the technique of lattice signatures without trapdoors and the associated signature compression technique, as well as the encryption method based on the learning with errors assumption. The scheme achieves indistinguishability against adaptive chosen ciphertext attacks under the learning with errors assumption. It also achieves existential unforgeability against adaptive chosen message attacks under the small integer solution assumption. The proposed scheme is not only quantum resistant, but also efficient. -
ZHENG Y. Digital signcryption or how to achieve cost (signature+encryption)cost(signature)+cost(encryption) [C]. CRYPTO 1997, California, USA, 1997: 165-179. MALONE-LEE J and MAO W. Two birds one stone: signcryption using rsa[C]. Proceedings of the 2003 RSA conference on The Cryptographers track, San Francisco, USA, 2003: 211-226. LI Fagen and TAKAGI T. Secure identity-based signcryption in the standard model[J]. Mathematical and Computer Modelling, 2013, 57(11/12): 2685-2694. LU Y and LI J. Efficient certificate-based signcryption secure against public key replacement attacks and insider attacks[J]. The Scientific World Journal, 2014, Article ID 295419. Shor P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509. 楊孝鵬, 馬文平, 張成麗. 一種新型基于環(huán)上帶誤差學(xué)習(xí)問(wèn)題的認(rèn)證密鑰交換方案[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1984-1988. YANG Xiaopeng, MA Wenping, and ZHANG Chengli. New authenticated key exchange scheme based on ring learning with errors problem[J]. Journal of Electronics Information Technology, 2015, 37(8): 1984-1988. 張彥華, 胡予濮, 江明明, 等. 格上可撤銷的基于身份的適應(yīng)性安全的加密方案[J]. 電子與信息學(xué)報(bào), 2015, 37(2): 423-428. ZHANG Yanhua, HU Yupu, JIANG Mingming, et al. A lattice-based revocable adaptive-id secure encryption scheme [J]. Journal of Electronics Information Technology, 2015, 37(2): 423-428. WANG Fenghe, HU Yupu, and WANG Chunxiao. Post- quantum secure hybrid signcryption from lattice assumption[J]. Applied Mathematics Information Sciences, 2012, 6(1): 23-28. LI Fagen, BIN MUHAVA F T, KHAN M K, et al. Lattice-based signcryption[J]. Concurrency and Computation: Practice and Experience, 2013, 25(14): 2112-2122. YAN Jianhua, WANG Licheng, YANG Yixian, et al. Efficient lattice-based signcryption in standard model[J]. Mathematical Problems in Engineering, 2013, Article ID 702539. LU Xiuhua, WEN Qiaoyan, JIN Zhengping, et al. A lattice- based signcryption scheme without random oracles[J]. Frontiers of Computer Science, 2014, 8(4): 667-675. LYUBASHEVSKY V. Lattice signatures without trapdoors [C]. EUROCRYPT 2012, Cambridge, USA, 2012: 738-755. BAI Shi and GALBRAITH S D. An improved compression technique for signatures based on learning with errors[C]. CT-RSA 2014, San Francisco, USA, 2014: 28-47. FUJISAKI E and OKAMOTO T. Secure integration of asymmetric and symmetric encryption schemes[J]. Journal of Cryptology, 2013, 26(1): 80-101. BELLARE M and NEVEN G. Multi-signatures in the plain public-key model and a general forking lemma[C]. Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, USA, 2006: 390-399. -
計(jì)量
- 文章訪問(wèn)數(shù): 1674
- HTML全文瀏覽量: 302
- PDF下載量: 439
- 被引次數(shù): 0