米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究
doi: 10.11999/JEIT151013 cstr: 32379.14.JEIT151013
基金項(xiàng)目:
國家自然科學(xué)基金(61573344)
Multipath Model and Inversion Method for Low-angle Target in Very High Frequency Radar
Funds:
The National Natural Science Foundation of China (61571344)
-
摘要: 現(xiàn)有的低仰角測(cè)高方法多采用鏡面反射模型,將直達(dá)波與多徑簡化為兩遠(yuǎn)場(chǎng)點(diǎn)源;然而實(shí)際中不規(guī)則反射面使多徑回波波前畸變,遠(yuǎn)場(chǎng)點(diǎn)源模型難以完全描述多徑信號(hào)。針對(duì)此模型失配問題,該文重點(diǎn)研究低仰角目標(biāo)多徑模型,首先分析經(jīng)典多徑模型,對(duì)反射系數(shù)和反射面高度進(jìn)行參數(shù)反演;然后提出一種擾動(dòng)多徑模型,將反射面對(duì)多徑回波的影響建模為擾動(dòng)反射系數(shù),并利用最大似然算法反演擾動(dòng)反射系數(shù)。計(jì)算機(jī)仿真結(jié)果驗(yàn)證了參數(shù)反演方法的有效性;實(shí)測(cè)數(shù)據(jù)驗(yàn)證了復(fù)雜情形下所建模型的合理性和反演方法的有效性,提高了低仰角測(cè)高算法在實(shí)際陣地的適用性。
-
關(guān)鍵詞:
- 米波雷達(dá) /
- 多徑模型 /
- 低仰角測(cè)高 /
- 擾動(dòng)反射系數(shù)
Abstract: The existing methods of altitude measurement for low-angle targets adopt the specular reflection surface model, and the direct and multipath signals are considered as two correlated far-field point sources. However, in reality, the wavefront of multipath signal is distorted by irregular reflection surface, and the far-field point source model is not enough to describe the multipath signal. To deal with this model mismatch problem, the low-angle multipath model is mainly studied. This paper begins with a discussion of classical multipath model and is followed by the inversion method of reflection coefficient and the height of reflection surface. Then the perturbation of the multipath signal caused by irregular reflection surface is modeled as perturbational reflection coefficient and a perturbational multipath model is developed with a maximum likelihood method to invert the proposed parameter. Simulation data processing results validate the effectiveness of the inversion method. The effectiveness of the proposed model and inversion method are validated by measured data processing results. These research results can provide valuable information for enhancing the applicability of the low-angle altitude measurement method in practical situations. -
BARTON D K. Low-angle radar tracking[J]. Proceedings of the IEEE, 1974, 62(6): 587-704. doi: 10.1109/PROC.1974. 9509. LO T and LITVA J. Use of a highly deterministic multipath signal model in low-angle tracking[J]. IEE Proceedings F, Radar and Signal Processing, 1991, 138(2): 163-171. doi: 10.1049/ip-f-2.1991.0022. 陳伯孝, 胡鐵軍, 鄭自良, 等. 基于波瓣分裂的米波雷達(dá)低仰角測(cè)高方法及其應(yīng)用[J]. 電子學(xué)報(bào), 2007, 35(6): 1021-1025. doi: 10.3321/j.issn:0372-2112.2007.06.003. CHEN Baixiao, HU Tiejun, ZHENG Ziliang, et al. Method of altitude measurement based on beam splitin VHF radar and its application[J]. Acta Electronica Sinica, 2007, 35(6): 1021-1025. doi: 10.3321/j.issn:0372-2112.2007.06.003. 洪升, 萬顯榮, 柯亨玉. 空間色噪聲背景下雙基地多輸入多輸出雷達(dá)低仰角估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(1): 15-21. doi: 10.11999/JEIT140290. HONG Sheng, WAN Xianrong, and KE Hengyu. Low- elevation estimation for bistatic MIMO radar in spatially colored noise[J]. Journal of Electronics Information Technology, 2015, 37(1): 15-21. doi: 10.11999/JEIT140290. 徐振海, 黃坦, 熊子源, 等. 基于頻率分集的陣列雷達(dá)低角跟蹤算法[J]. 國防科技大學(xué)學(xué)報(bào), 2014(2): 93-98. doi: 10.11887 /j.cn.201402016. XU Zhenhai, HUANG Tan, XIONG Ziyuan, et al. Low angle tracking algorithm using frequency diversity for array radar[J]. Journal of National University of Defense Technology, 2014(2): 93-98. doi: 10.11887/j.cn.201402016. PARK D, YANG E, AHN S, et al. Adaptive beamforming for low-angle target tracking under multipath interference[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(4): 2564-2577. doi: 10.1109/TAES.2014.130185. 胡曉琴, 陳建文, 王永良. 米波雷達(dá)測(cè)高多徑模型研究[J]. 電波科學(xué)學(xué)報(bào), 2008, 23(4): 651-657. doi: 10.3969/j.issn. 1005-0388.2008.04.011. HU Xiaoqin, CHEN Jianwen, and WANG Yongliang. Research on meter-wave radar height-finding multipath model[J]. Chinese Journal of Radio Science, 2008, 23(4): 651-657. doi: 10.3969/j.issn.1005-0388.2008.04.011. ZHU Wei and CHEN Baixiao. Novel methods of DOA estimation based on compressed sensing[J]. Multidimensional Systems and Signal Processing, 2013, 26(1): 113-123. doi: 10.1007/s11045-013-0239-2. 王園園, 劉崢, 曹運(yùn)合. 基于壓縮感知的米波雷達(dá)低空測(cè)角算法[J]. 系統(tǒng)工程與電子技術(shù), 2014(4): 667-671. doi: 10.3969/j.issn.1001-506X.2014.04.10. WANG Yuanyuan, LIU Zheng, and CAO Yunhe. Low-angle estimation method based on compressed-sensing for meter-wave radar[J]. Systems Engineering and Electronics, 2014(4): 667-671. doi: 10.3969/j.issn.1001-506X.2014.04.10. YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959-4973. doi: 10.1109/TSP. 2014.2339792. ZHU Wei and CHEN Baixiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647-662. doi: 10.1007 /s00034-012-9472-4. HAN Yinghua, WANG Jinkuan, ZAHO Qiang, et al. A blind central DOA estimation algorithm in radar low-angle tracking environment[C]. 2009 IET International Radar Conference, Guilin, 2009: 20-22. BOMAN K and STOICA P. Low angle estimation: models, methods, and bounds[J]. Digital Signal Processing, 2001, 11(1): 35-79. doi: 10.1006/dspr.2000.0373. STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(5): 720-741. doi: 10.1109/29.17564. SHAN Tiejun, WAX M, and KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP. 1985.1164649. -
計(jì)量
- 文章訪問數(shù): 1427
- HTML全文瀏覽量: 115
- PDF下載量: 396
- 被引次數(shù): 0