Turbo均衡中的符號(hào)方差反饋均衡器
doi: 10.11999/JEIT150825 cstr: 32379.14.JEIT150825
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61471351),國(guó)家863計(jì)劃(2009AA 093301)
Symbol-variance Feedback Equalizer for Turbo Equalization
Funds:
The National Natural Science Foundation of China (61471351), The National 863 Program of China (2009AA 093301)
-
摘要: 為了降低Turbo均衡中均衡器的復(fù)雜度,該文提出了符號(hào)方差反饋均衡算法(SVFE)。該算法是對(duì)精確的線性最小均方誤差估計(jì)值(LMMSE)進(jìn)行Taylor展開得到的。在該算法中,先利用時(shí)不變均衡器得到初步符號(hào)估計(jì)值,再根據(jù)先驗(yàn)符號(hào)方差對(duì)估計(jì)值加權(quán),最后進(jìn)行時(shí)不變?yōu)V波得到更佳的符號(hào)估計(jì)值。由于用到了時(shí)變的先驗(yàn)符號(hào)方差信息,其性能更接近精確的LMMSE均衡器。將所提算法用于Proakis C信道下的Turbo均衡處理,和時(shí)不變均衡算法進(jìn)行仿真對(duì)比,所提算法將信噪比損失從0.83 dB降到了0.17 dB,并且仍可通過快速傅里葉變換降低為對(duì)數(shù)復(fù)雜度。
-
關(guān)鍵詞:
- Turbo均衡 /
- 軟輸入軟輸出均衡 /
- 最小均方誤差線性均衡器
Abstract: A novel Symbol-Variance Feedback Equalizer (SVEF) algorithm is proposed to reduce the computational complexity of the equalizer in Turbo equalization. The derivation of the algorithm is based on the Taylor expansion of the Linear Minimum Mean Squared Error (LMMSE) estimation function. In the proposed scheme, the initial estimates are obtained from the time-invariant equalizer, then the estimates are weighted by the a priori symbol variances and finally filtered by a time-invariant filter to obtain better estimates. As the time-variant a priori symbol variances are utilized, the performance of the proposed equalizer is much closer to that of the exact MMSE linear equalizer. Simulation results show that the Signal-to-Noise Ratio (SNR) loss of the proposed scheme in Proakis C channel is reduced to 0.17 dB from 0.83 dB compared to the various time-invariant MMSE Turbo equalization, and its computational complexity can be reduced to logarithmical order by implementation based on the fast Fourier transform. -
DOUILLARD C, JEZEQUEL M, BERROU C, et al. Iterative correction of intersymbol interference: Turbo- equalization[J]. European Transactions on Telecommunications and Related Technologies, 1995, 6(5): 507-511. doi: 10.1002/ett.4460060506. TUCHLER M, KOETTER R, and SINGER A C. Turbo equalization: principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754-767. doi: 10.1109/TCOMM.2002.1006557. TUCHLER M, SINGER A C, and KOETTER R. Minimum mean squared error equalization using a priori information[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 673-683. doi: 10.1109/78.984761. LOPES R R. Iterative estimation, equalization and decoding[D]. [Ph.D. dissertation], Georgia Institute of Technology, 2003. TUCHLER M and SINGER A C. Turbo equalization: An overview[J]. IEEE Transactions on Information Theory, 2011, 57(2): 920-952. doi: 10.1109/TIT.2010.2096033. GUO Q and HUANG D. Concise representation for the soft-in soft-out LMMSE detector[J]. IEEE Communications Letters, 2011, 15(5): 566-568. doi: 10.1109/LCOMM.2011. 032811.102073. LAOT C, GLAVIEUX A, and LABAT J. Turbo equalization: adaptive equalization and channel decoding jointly optimized[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1744-1752. doi: 10.1109/ 49.947038. STOJANOVIC M and PREISIG J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84-89. doi: 10.1109/MCOM.2009.4752682. SINGER A C, NELSON J K, and KOZAT S S. Signal processing for underwater acoustic communications[J]. IEEE Communications Magazine, 2009, 47(1): 90-96. doi: 10.1109/ MCOM.2009.4752683. 許浩, 朱敏, 武巖波. 一種水聲通信中的多陣元Turbo均衡算法[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1465-1471. doi: 10.3724/SP.J.1146. 2013.01027. XU Hao, ZHU Min, and WU Yanbo. An algorithm of multi-array Turbo equalization of underwater acoustic communication[J]. Journal of Electronics Information Technology, 2014, 36(6): 1465-1471. doi: 10.3724/SP.J.1146. 2013.01027. LOU H A and XIAO C S. Soft-decision feedback Turbo equalization for multilevel modulations[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 186-195. doi: 10.1109/TSP.2010.2083656. VOGELBRUCH F and HAAR S. Low complexity Turbo equalization based on soft feedback interference cancelation [J]. IEEE Communications Letters, 2005, 9(6): 586-588. doi: 10.1109/LCOMM.2005.07016. 竇高奇, 高俊, 陶偉, 等. 基于序列檢測(cè)的塊判決輔助Turbo均衡器[J]. 電子與信息學(xué)報(bào), 2009, 31(9): 2152-2156. DOU Gaoqi, GAO Jun, TAO Wei, et al. Sequence-based block decision-aided equalizer for Turbo equalization[J]. Journal of Electronics Information Technology, 2009, 31(9): 2152-2156. KIM K, KALANTAROVA N, KOZAT S S, et al. Linear MMSE-optimal Turbo equalization using context trees[J]. IEEE Transactions on Signal Processing, 2013, 61(12): 3041-3055. doi: 10.1109/TSP.2013.2256899. 楊曉霞, 王海斌, 汪俊, 等. 水聲通信中基于信道辨識(shí)的盲Turbo均衡方法[J]. 應(yīng)用聲學(xué), 2015, 34(2): 125-134. YANG Xiaoxia, WANG Haibin, WANG Jun, et al. Blind Turbo equalization based on channel identification for underwater acoustic communications[J]. Journal of Applied Acoustics, 2015, 34(2): 125-134. 張冬玲, 楊勇, 李靜, 等. 基于Turbo均衡和信道估計(jì)的單通道盲信號(hào)恢復(fù)算法[J]. 通信學(xué)報(bào), 2014, 35(1): 47-61. ZHANG Dongling, YANG Yong, LI Jing, et al. Blind data recovery of single-channel mixed signals based on Turbo equalization and channel estimation[J]. Journal of Chinese Institute of Communications, 2014, 35(1): 47-61. PROAKIS J G and MANOLAKIS D G. Digital Signal Processing: Principles, Algorithms and Applications[M]. 4th ed, New Jersey: Prentice-Hall, 2007. PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed, New York: McGraw-Hill, 2008: 640-672. LEE S J, SINGER A C, and SHANBHAG N R. Linear Turbo equalization analysis via BER transfer and EXIT charts[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2883-2897. doi: 10.1109/TSP.2005.850375. MOVAHEDIAN A and MCGUIRE M. On the capacity of iteratively estimated channels using LMMSE estimators[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 97-107. doi: 10.1109/TVT.2014.2320928. 鐘凱, 彭華, 葛臨東. 基于Rimoldi分解的連續(xù)相位調(diào)制信號(hào)Turbo頻域均衡算法[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 1190-1195. doi: 10.3724/SP.J.1146.2013.00990. ZHONG Kai, PENG Hua, and GE Lindong. Turbo frequency domain equalization algorithm based on Rimoldi decomposition for continuous phase modulation signals[J]. Journal of Electronics Information Technology, 2014, 36(5): 1190-1195. doi: 10.3724/SP.J.1146.2013.00990. -
計(jì)量
- 文章訪問數(shù): 1696
- HTML全文瀏覽量: 239
- PDF下載量: 409
- 被引次數(shù): 0