基于局部敏感核稀疏表示的視頻跟蹤
doi: 10.11999/JEIT150785 cstr: 32379.14.JEIT150785
-
1.
(空軍工程大學航空航天工程學院 西安 710038) ②(空軍工程大學信息與導航學院 西安 710077) ③(中國人民解放軍95972部隊 酒泉 735018)
國家自然科學基金(61175029, 61379104, 61372167),國家自然科學基金青年科學基金(61203268, 61202339)
Visual Tracking via Locality-sensitive Kernel Sparse Representation
-
2.
(Information and Navigation Institute, Air Force Engineering University, Xi&rsquo
The National Natural Science Foundation of China (61175029, 61379104, 61372167), The Young Scientists Fund of the National Natural Science Foundation of China (61203268, 61202339)
-
摘要: 為了解決l1范數約束下的稀疏表示判別信息不足的問題,該文提出基于局部敏感核稀疏表示的視頻目標跟蹤算法。為了提高目標的線性可分性,首先將候選目標的SIFT特征通過高斯核函數映射到高維核空間,然后在高維核空間中求解局部敏感約束下的核稀疏表示,將核稀疏表示經過多尺度最大值池化得到候選目標的表示,最后將候選目標的表示代入在線的SVMs,選擇分類器得分最大的候選目標作為目標的跟蹤位置。實驗結果表明,由于利用了核稀疏表示下數據的局部性信息,使得算法的魯棒性得到一定程度的提高。Abstract: In order to solve the problem of lack of discriminability in thel1-norm constraint sparse representation, visual tracking via locality-sensitive kernel sparse representation is proposed. To improve the linear discriminable power, the candidates Scale-Invariant Feature Transform (SIFT) is mapped into high dimension kernel space using the Gaussian kernel function. The locality-sensitive kernel sparse representation is acquired in the kernel space. The candidates representation are obtained after multi-scale maximum pooling. Finally, the candidates representation is put into the classifier and the candidate with the biggest Support Vector Machines (SVMs) score is recognized as the target. And the experiments demonstrate that the robustness of the proposed algorithm is improved due to the use of the data locality under the kernel sparse representation.
-
WU Yi, LIM J, and YANG Minghsuan. Object tracking Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1442-1456. WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044. MEI X and LING H. Robust visual tracking using L1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, 2009: 1436-1443. BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1830-1837. ZHONG Wei, LU Huchuan, and YANG Minghsuan. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368. WANG N and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, Nevada, 2013: 809-817. GAO Jin, LING Haibin, HU Weiming, et al. Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M]. Computer Vision-ECCV 2014, Zurich: Springer International Publishing, 2014: 188-203. 王瑞, 杜林峰, 孫督, 等. 復雜場景下結合SIFT與核稀疏表示的交通目標分類識別[J]. 電子學報, 2014, 42(11): 2129-2134. WANG Rui, DU Linfeng, SUN Du, et al. Traffic object recognition in complex scenes based on SIFT and kernel sparse representation[J]. Acta Electronica Sinica, 2014, 42(11): 2129-2134. YU K, ZHANG T, and GONG Y. Nonlinear learning using local coordinate coding[C]. Advances in Neural Information Processing Systems. Vancouver, 2009: 2223-2231. LI Feifei, FERGUS R, and PERONA P. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70. WANG Qing, FENG Chen, YANG Jimei, et al. Transferring visual prior for online object tracking[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3296-3305. LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms[C]. Advances in Neural Information Processing Systems, Vancouver, 2006: 801-808. GAO Shenghua, TSANG I W, and CHIA Liangtien. Sparse representation with kernels[J]. IEEE Transactions on Image Processing, 2013, 22(2): 423-434. WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained linear coding for image classification[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA. 2010: 3360-3367. CHANG Chihchung and LIN Chihjen. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. SMOLA A J and SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. ROSS M A, LIM Jongwoo, LIN Ruei-Sung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125-141. -
計量
- 文章訪問數: 1325
- HTML全文瀏覽量: 110
- PDF下載量: 518
- 被引次數: 0