一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于局部敏感核稀疏表示的視頻跟蹤

黃宏圖 畢篤彥 高山 查宇飛 侯志強

黃宏圖, 畢篤彥, 高山, 查宇飛, 侯志強. 基于局部敏感核稀疏表示的視頻跟蹤[J]. 電子與信息學報, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
引用本文: 黃宏圖, 畢篤彥, 高山, 查宇飛, 侯志強. 基于局部敏感核稀疏表示的視頻跟蹤[J]. 電子與信息學報, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
HUANG Hongtu, BI Duyan, GAO Shan, ZHA Yufei, HOU Zhiqiang. Visual Tracking via Locality-sensitive Kernel Sparse Representation[J]. Journal of Electronics & Information Technology, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
Citation: HUANG Hongtu, BI Duyan, GAO Shan, ZHA Yufei, HOU Zhiqiang. Visual Tracking via Locality-sensitive Kernel Sparse Representation[J]. Journal of Electronics & Information Technology, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785

基于局部敏感核稀疏表示的視頻跟蹤

doi: 10.11999/JEIT150785 cstr: 32379.14.JEIT150785
基金項目: 

國家自然科學基金(61175029, 61379104, 61372167),國家自然科學基金青年科學基金(61203268, 61202339)

Visual Tracking via Locality-sensitive Kernel Sparse Representation

Funds: 

The National Natural Science Foundation of China (61175029, 61379104, 61372167), The Young Scientists Fund of the National Natural Science Foundation of China (61203268, 61202339)

  • 摘要: 為了解決l1范數約束下的稀疏表示判別信息不足的問題,該文提出基于局部敏感核稀疏表示的視頻目標跟蹤算法。為了提高目標的線性可分性,首先將候選目標的SIFT特征通過高斯核函數映射到高維核空間,然后在高維核空間中求解局部敏感約束下的核稀疏表示,將核稀疏表示經過多尺度最大值池化得到候選目標的表示,最后將候選目標的表示代入在線的SVMs,選擇分類器得分最大的候選目標作為目標的跟蹤位置。實驗結果表明,由于利用了核稀疏表示下數據的局部性信息,使得算法的魯棒性得到一定程度的提高。
  • WU Yi, LIM J, and YANG Minghsuan. Object tracking Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1442-1456.
    WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
    MEI X and LING H. Robust visual tracking using L1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, 2009: 1436-1443.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1830-1837.
    ZHONG Wei, LU Huchuan, and YANG Minghsuan. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    WANG N and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, Nevada, 2013: 809-817.
    GAO Jin, LING Haibin, HU Weiming, et al. Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M]. Computer Vision-ECCV 2014, Zurich: Springer International Publishing, 2014: 188-203.
    王瑞, 杜林峰, 孫督, 等. 復雜場景下結合SIFT與核稀疏表示的交通目標分類識別[J]. 電子學報, 2014, 42(11): 2129-2134.
    WANG Rui, DU Linfeng, SUN Du, et al. Traffic object recognition in complex scenes based on SIFT and kernel sparse representation[J]. Acta Electronica Sinica, 2014, 42(11): 2129-2134.
    YU K, ZHANG T, and GONG Y. Nonlinear learning using local coordinate coding[C]. Advances in Neural Information Processing Systems. Vancouver, 2009: 2223-2231.
    LI Feifei, FERGUS R, and PERONA P. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
    WANG Qing, FENG Chen, YANG Jimei, et al. Transferring visual prior for online object tracking[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3296-3305.
    LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms[C]. Advances in Neural Information Processing Systems, Vancouver, 2006: 801-808.
    GAO Shenghua, TSANG I W, and CHIA Liangtien. Sparse representation with kernels[J]. IEEE Transactions on Image Processing, 2013, 22(2): 423-434.
    WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained linear coding for image classification[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA. 2010: 3360-3367.
    CHANG Chihchung and LIN Chihjen. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
    SMOLA A J and SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
    ROSS M A, LIM Jongwoo, LIN Ruei-Sung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125-141.
  • 加載中
計量
  • 文章訪問數:  1325
  • HTML全文瀏覽量:  110
  • PDF下載量:  518
  • 被引次數: 0
出版歷程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-11-27
  • 刊出日期:  2016-04-19

目錄

    /

    返回文章
    返回