基于高階累積量和循環(huán)譜的信號調(diào)制方式混合識別算法
doi: 10.11999/JEIT150747 cstr: 32379.14.JEIT150747
-
1.
(華北電力大學(xué)電氣與電子工程學(xué)院 北京 102206) ②(國家無線電監(jiān)測中心 北京 100037)
基金項(xiàng)目:
國家自然科學(xué)基金(61372051)
Mixed Recognition Algorithm for Signal Modulation Schemes by High-order Cumulants and Cyclic Spectrum
-
1.
(School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)
-
2.
(The State Radio Monitoring Center, Beijing 100037, China)
Funds:
The National Natural Science Foundation of China (61372051)
-
摘要: 為了識別當(dāng)前通信系統(tǒng)所采用的主要調(diào)制方式,該文結(jié)合高階累積量和循環(huán)譜的特點(diǎn),采用混合識別算法,同時(shí)應(yīng)用智能決策算法(神經(jīng)網(wǎng)絡(luò))對信號進(jìn)行識別。該算法基于四階和六階高階累積量構(gòu)造出一個(gè)新的特征參數(shù),將數(shù)字調(diào)制信號分為{BPSK, 2ASK}, {QPSK}, {2FSK, 4FSK}, {MSK}和{16QAM, 64QAM}5類。然后利用高階累積量的其它特征參數(shù)以及循環(huán)譜特征對{OFDM}, {16QAM, 64QAM}, {2ASK, BPSK}及{2FSK, 4FSK}進(jìn)行識別。為便于工程實(shí)現(xiàn),該文采用半實(shí)物仿真以及LabVIEW和MATLAB混合編程來驗(yàn)證算法。仿真結(jié)果證明,該算法能夠在較低信噪比下實(shí)現(xiàn)對{OFDM, BPSK, QPSK, 2ASK, 2FSK, 4FSK, MSK, 16QAM, 64QAM}等多種信號的分類,在信噪比高于 5 dB時(shí),調(diào)制方式識別率可達(dá)94%以上,由此證明了該方法的有效性。
-
關(guān)鍵詞:
- 調(diào)制識別 /
- 高階累積量 /
- 循環(huán)譜 /
- 神經(jīng)網(wǎng)絡(luò)
Abstract: To recognize the major modulation schemes which are applied to concurrent communication systems, a joint method based on the high-order cumulants and cyclic spectrum with intelligent decision algorithm (neural network) is proposed to recognize the modulation schemes for digital signals. Firstly, a new featured parameter is extracted from the four-order and six-order cumulants of the digital signals to identify the modulation schemes of {BPSK, 2ASK}, {QPSK}, {2FSK, 4FSK}, {MSK}, and {16QAM, 64QAM}, then {OFDM}, {16QAM, 64QAM}, {2ASK, BPSK}, and {2FSK, 4FSK} are classified by the other featured parameters of the joint high-order cumulants and cyclic spectrum algorithms. In order to facilitate the engineering implementation, the semi-physical simulation and mixed programming of LabVIEW and MATLAB are used to validate the proposed algorithms. Simulation results show that the algorithms can recognize modulations {OFDM, BPSK, QPSK, 2ASK, 2FSK, 4FSK, MSK, 16QAM, 64QAM} with small Signal-to-Noise Ratio (SNR). The average recognition rate is more than 94% with SNR greater or equal than 5 dB, which validates the effectiveness of the proposed algorithms.-
Key words:
- Modulation recognition /
- High-order cumulants /
- Cyclic spectrum /
- Neural network
-
SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429. doi: 10.1109/26.837045. 程漢文, 朱雷, 吳樂南. 基于累計(jì)量的干擾信號調(diào)制識別算法[J]. 電子與信息學(xué)報(bào), 2009, 31(7): 1741-1745. CHENG Hanwen, ZHU Lei, and WU Yuenan. Modulation classification algorithm for jamming signal based on cumulant[J]. Journal of Electronics Information Technology, 2009, 31(7): 1741-1745. SHAKRA Mahmoud M, SHAHEEN Ehab M, BAKR Hossam Abou, et al. C3. Automatic digital modulation recognition of satellite communication signals[C]. 32nd National Satellite Communication Signals, Giza, 2015: 118-126. doi: 10.1109/ NRSC.2015.7117822. WANG Lanxun, REN Yujing, and ZHANG Ruihua. Algorithm of digital modulation recognition based on support vector machines[C]. International Conference on Machine Learning and Cybernetics, Baoding, 2009: 980-983. doi: 10.1109/ICMLC.2009.5212366. 孫鋼燦, 王忠勇, 劉正威. 基于高階累積量實(shí)現(xiàn)數(shù)字調(diào)相信號調(diào)制識別[J]. 電波科學(xué)學(xué)報(bào), 2012, 17(4): 825-831. doi: 10.13443/j.cjors.2012.04.033. SUN Gangcan, WANG Zhongyong, and LIU Zhengwei. Performance analysis of modulation recongnition of MPSK signals based on high-order cumulants[J]. Chinese Journal of Radio Science, 2012, 17(4): 825-831. doi: 10.13443/j.cjors. 2012.04.033. LIU Mingzhu, ZHAO Yue, Shi Lin, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin, 2014: 686-690. doi: 10.1109/IMCCC.2014.146 劉明騫, 李兵兵, 曹超鳳, 等. 認(rèn)知無線電中非高斯噪聲下數(shù)字調(diào)制信號識別方法[J]. 通信學(xué)報(bào), 2014, 35(1): 82-88. doi: 10.3969/j.issn.1000-436x.2014.01.010 LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signals over non- Gaussian noise in cognitive radio[J]. Journal on Communications, 2014, 35(1): 82-88. doi: 10.3969/j.issn. 1000-436x.2014.01.010. FEHSKE A, GAEDDERT J, and REED J. A new approach to signal classification using spectral correlation and neural networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, 2005: 144-150. doi: 10.1109/DYSPAN. 2005. 1542629. 趙宇峰, 曹玉健, 紀(jì)勇, 等. 基于循環(huán)頻率特征的單信道混合通信信號的調(diào)制識別[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 1202-1208. doi: 10.3724/SP.J.1146.2013.00454. ZHAO Yufeng, CAO Yujian, JI Yong, et al. Modulation identification for single-channel mixed communication signals based on cyclic frequency features[J]. Journal of Electronics Information Technology, 2014, 36(5): 1202-1208. doi: 10.3724/SP.J.1146.2013.00454. HAN Yu, WEI Guohua, SONG Chunyun, et al. Hierarchical digital modulation recognition based on higher-order cumulants[C]. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, 2012: 1645-1648. doi: 10.1109 /IMCCC.2012.398. 廖燦輝, 涂世龍, 萬堅(jiān). 一種抗頻偏的衛(wèi)星幅相調(diào)制信號識別算法[J]. 電子與信息學(xué)報(bào), 2014, 36(2): 346-352. doi: 10.3724/ SP.J.1146.2013.00512. LIAO Canhui, TU Shilong, and WAN Jian. An anti- frequency-offset algorithm for modulation recognition of satellite amplitude-phase modulated signals[J]. Journal of Electronics Information Technology, 2014, 36(2): 346-352. doi: 10.3724/SP.J.1146.2013.00512. VISAN D A, JURIAN M, LITA I, et al. Modeling and simulation of an recognition system for digital modulated signals[C]. 32nd International Spring Seminar on Electronics Technology(ISSE), Brno, 2009: 1-5. doi: 10.1109/ISSE.2009. 5206992. YAJNANARAYANA V and AHMED I Z. Novel method for blind constellation detection using template based classifier for quadrature digital modulation schemes[C]. 10th International Conference on Electronic Measurement Instruments (ICEMI), Chengdu, 2011: 1-4. doi: 10.1109/ ICEMI.2011.6037934. RAMKUMAR B. Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 27-45. doi: 10.1109/MCAS.2008.931739. 趙葉芳. 基于譜相關(guān)和神經(jīng)網(wǎng)絡(luò)的調(diào)制方式識別究[D]. [碩士論文], 哈爾濱工業(yè)大學(xué), 2011. ZHAO Yefang. Modulation recongnition based on spectral correlation and network[D]. [Master dissertation], Harbin Institute of Technology, 2011. 包錫銳, 吳瑛, 周欣. 基于高階累積量的數(shù)字調(diào)制信號識別算法[J]. 信息工程大學(xué)學(xué)報(bào), 2007, 8(4): 463-467. BAO Xirui, WU Ying, and ZHOU Xin. Algorithm of digital modulation recognition based on higher-order cumulants[J]. Journal of Information Engineering University, 2007, 8(4): 463-467. 陳澤藝. 基于循環(huán)譜和高階累積量的聯(lián)合模式識別方法[J]. 電訊技術(shù), 2015, 16(3): 328-332. doi: 10.3969/j.issn.1001- 893x.2015.03.017. CHEN Zeyi. A combined modulation recognition based on cyclic spectrum and high-order cumulants[J]. Telecommunication Engineering, 2015, 16(3): 328-332. doi: 10.3969/j.issn.1001-893x.2015.03.017. -
計(jì)量
- 文章訪問數(shù): 2114
- HTML全文瀏覽量: 241
- PDF下載量: 841
- 被引次數(shù): 0