一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

實(shí)時(shí)超像素跟蹤算法

王暐 王春平 付強(qiáng) 徐艷

王暐, 王春平, 付強(qiáng), 徐艷. 實(shí)時(shí)超像素跟蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
引用本文: 王暐, 王春平, 付強(qiáng), 徐艷. 實(shí)時(shí)超像素跟蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
Citation: WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705

實(shí)時(shí)超像素跟蹤算法

doi: 10.11999/JEIT150705 cstr: 32379.14.JEIT150705
基金項(xiàng)目: 

國家自然科學(xué)基金(61141009)

Real-time Superpixels Based Tracking Method

Funds: 

The National Natural Science Foundation of China (61141009)

  • 摘要: 建立有效的目標(biāo)表觀模型是視覺跟蹤算法的關(guān)鍵。該文采用中層次視覺線索(超像素)對目標(biāo)表觀進(jìn)行建模,提出一種實(shí)時(shí)超像素跟蹤(RSPT)算法。算法采用K近鄰(KNN)方法從超像素特征集合中學(xué)習(xí)目標(biāo)的判別式表觀模型;在后續(xù)幀中,根據(jù)學(xué)習(xí)到的表觀模型計(jì)算目標(biāo)-背景置信圖,然后巧妙地采用積分圖方法估計(jì)目標(biāo)狀態(tài),實(shí)現(xiàn)了高速的全局最優(yōu)估計(jì);最后設(shè)計(jì)了目標(biāo)表觀模型的在線更新策略,引入遮擋因子對遮擋進(jìn)行判斷。在配置i5處理器的電腦中,所提RSPT算法使用未經(jīng)優(yōu)化的Matlab代碼以19幀/s的速度實(shí)時(shí)運(yùn)行。對若干序列的對比實(shí)驗(yàn)表明,所提算法能夠在多種復(fù)雜環(huán)境下穩(wěn)定跟蹤目標(biāo),具有良好的魯棒性。
  • WU Yi, LIM Jongwoo, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1354-1362.
    陳思, 蘇松志, 李紹滋, 等. 基于在線半監(jiān)督boosting的協(xié)同訓(xùn)練目標(biāo)跟蹤算法[J]. 電子與信息學(xué)報(bào), 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    CHEN Si, SU Songzhi, LI Shaozi, et al. A novel co-training object tracking algorithm based on online semi-supervised boosting[J]. Journal of Electronics Information Technology, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    AVIDAN S. Ensemble tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 494-501.
    BABENKO B, BELONGIE S, and YANG M H. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1003-1010.
    ZHANG Kaihua, ZHANG Lei, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
    FEDERICO P and BIMBO A D. Object tracking by oversampling local features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2538-2551.
    ROSS D, LIM J, LIN R, et al. Incremental learning for robust visual tracking[J]. International Journal of Compute Vision, 2008, 77(1): 125-141.
    COMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 564-577.
    KWON J and LEE K M. Visual tracking decomposition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1269-1276.
    MEI X and LING H. Robust visual tracking using l1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    薛模根, 朱虹, 袁廣林. 基于在線判別式字典學(xué)習(xí)的魯棒視覺跟蹤[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning [J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    YANG Fan, LU Huchuan, and YANG M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.
    REN X and MALIK J. Tracking as repeated figure/ground segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1-8.
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2001: 511-518.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 798-805.
    GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. British Machine Vision Conference, Edinburgh, England, 2006: 47-56.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1512
  • HTML全文瀏覽量:  158
  • PDF下載量:  750
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-12-04
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回