一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于特征值分解的中心支持向量機(jī)算法

陳素根 吳小俊

陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
引用本文: 陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
Citation: CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693

基于特征值分解的中心支持向量機(jī)算法

doi: 10.11999/JEIT150693 cstr: 32379.14.JEIT150693
基金項(xiàng)目: 

國家自然科學(xué)基金(61373055, 61103128), 111引智計(jì)劃項(xiàng)目(B12018),江蘇省工業(yè)支持計(jì)劃項(xiàng)目(BE2012031)

Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition

Funds: 

The National Natural Science Foundation of China (61373055, 61103128), 111 Project of Chinese Ministry of Education (B12018), Industrial Support Program of Jiangsu Province (BE2012031)

  • 摘要: 針對廣義特征值中心支持向量機(jī)(GEPSVM)訓(xùn)練和決策過程不一致問題,該文提出一類改進(jìn)的基于特征值分解的中心支持向量機(jī),簡稱為IGEPSVM。首先針對二分類問題提出了基于特征值分解的中心支持向量機(jī),然后基于一類對余類策略將其推廣到多類分類問題。將GEPSVM求解廣義特征值問題轉(zhuǎn)化為求解標(biāo)準(zhǔn)特征值問題,降低了計(jì)算復(fù)雜度。引入了一個(gè)新的參數(shù),可以調(diào)節(jié)模型的性能,提高了GEPSVM的分類精度。提出了基于IGEPSVM的多類分類算法。實(shí)驗(yàn)結(jié)果表明,與GEPSVM算法相比較,IGEPSVM不僅提高了分類精度,而且縮短了訓(xùn)練時(shí)間。
  • CORTES C and VAPNIK V N. Support vector machine[J]. Machine Learning, 1995, 20(3): 273-297.
    OSUNA E, FREUND R, and GIROSI F. Training support vector machines: an application to face detection[C]. Proceedings of Computer Vision and Pattern Recognition, San Juan, 1997: 130-136.
    ISA D, LEE L H, KALLIMANI V P, et al. Text document preprocessing with the Bayes formula for classification using the support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264-1272.
    BOSER B, GUYON I, and VAPNIK V N. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, New York, 1992: 144-152.
    OSUNA E, FREUND R, and GIROSI F. An improved training algorithm for support vector machines[C]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing, New York, USA, 1997: 276-285.
    PLATT J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods: Support Vector Machines, Cambridge, MA, MIT Press, 1998: 41-65.
    張戰(zhàn)成, 王士同, 鄧趙紅, 等. 支持向量機(jī)的一種快速分類算法[J]. 電子與信息學(xué)報(bào), 2011, 33(9): 2181-2186.
    ZHANG Zhancheng, WANG Shitong, DENG Zhaohong, et al. Fast decision using SVM for incoming samples[J]. Journal of Electronics Information Technology, 2011, 33(9): 2181-2186.
    MANGASARIAN O L and WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
    JAYADEVA, KHEMCHANDAI R, and CHANDRA S. Twin support vector machine classification for pattern classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
    SHAO Y H, ZHANG C H, WANGX B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968.
    PENG X J. TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognition, 2011, 44(10): 2678-2692.
    QI Z Q, TIAN Y J, and SHI Y. Robust twin support vector machine for pattern classification[J]. Pattern Recognition, 2013, 46(1): 305-316.
    SHAO Y H, DENG N Y, and CHEN W J. A proximal classifier with consistency[J]. Knowledge-Based Systems, 2013, 49: 171-178.
    Tian Y J, Qi Z Q, Ju X C, et al. Nonparallel support vector machines for pattern classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1067-1079.
    DING S F, HUA X P, and YU J Z. An overview on nonparallel hyperplane support vector machine algorithms[J]. Neural Computing and Applications, 2014, 25(5): 975-982.
    王娜, 李霞. 基于類加權(quán)的雙支持向量機(jī)[J]. 電子與信息學(xué)報(bào), 2007, 29(4): 859-862.
    WANG Na and LI Xia. A new dual support vector machine based on class-weighted[J]. Journal of Electronics Information Technology, 2007, 29(4): 859-862.
    BOTTOU L, CORTES C, DENKER J S, et al. Comparison of classifier methods: a case study in handwritten digit recognition[C]. Proceedings of IEEE International Conference on Pattern Recognition, Paris, 1994: 77-82.
    KRE?EL U. Pairwise Classification and Support Vector Machines[M]. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press, 1999: 255-268.
    CRAMMER K and SINGER Y. On the learn ability and design of output codes for multi-class problems[J]. Machine Learning, 2002, 47(2/3): 201-233.
    XU Y T, GUO R, and WANG L S. A twin multi-class classification support vector machine[J]. Cognitive Computation, 2013, 5(4): 580-588.
    NASIRI J A, CHARKARI N M, and JALILI S. Least squares twin multi-class classification support vector machine[J]. Pattern Recognition, 2015, 48(3): 984-992.
    PARLETT B. The Symmetric Eigenvalue Problem[M]. Upper Saddle River, NJ, USA, SIAM Press, 1998: 61-80.
    BLAKE C L and MERZ C J. UCI repository of machine learning databases[R]. Irvine, CA: Department of Information and Computers Science, University of California, 1998.
    CHANG C and LIN C. LIBSVM: A library for support vector machine[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1440
  • HTML全文瀏覽量:  150
  • PDF下載量:  435
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-09-17
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回