超密集分簇網(wǎng)絡(luò)中基于預(yù)測(cè)門限滯后余量可調(diào)的切換算法
doi: 10.11999/JEIT150681 cstr: 32379.14.JEIT150681
-
2.
(南京郵電大學(xué)江蘇省無線通信重點(diǎn)實(shí)驗(yàn)室 南京 210003) ②(東南大學(xué)移動(dòng)通信國(guó)家重點(diǎn)實(shí)驗(yàn)室 南京 210096)
國(guó)家863計(jì)劃(2015AA01A705),國(guó)家自然科學(xué)基金(61372125),東南大學(xué)移動(dòng)通信國(guó)家重點(diǎn)實(shí)驗(yàn)室開放研究基金(2015D10)
A Handover Algorithm Based on Prediction of Adjustable Threshold Hysteresis Margin in Ultra Dense Network
-
2.
(Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
The National 863 Program of China (2015AA01A705), The National Natural Science Foundation of China (61372125), The open research fund of National Mobile Communications Research Laboratory, Southeast University (2015D10)
-
摘要: 在第五代移動(dòng)通信(5G)系統(tǒng)中,大規(guī)模MIMO天線和超密集部署網(wǎng)絡(luò)是實(shí)現(xiàn)高吞吐量的兩種方式。針對(duì)超密集網(wǎng)絡(luò)的切換管理的問題,該文基于網(wǎng)絡(luò)分簇的思想提出了根據(jù)終端設(shè)備運(yùn)動(dòng)情況動(dòng)態(tài)調(diào)節(jié)滯后余量的切換管理算法。在該算法中,基于小基站分簇化管理的前提,用戶設(shè)備在小區(qū)間切換分為預(yù)切換和正式切換兩個(gè)階段,預(yù)切換階段完成最佳目標(biāo)小區(qū)選擇、小區(qū)資源預(yù)留和預(yù)鑒權(quán)等操作,正式切換階段根據(jù)預(yù)切換階段監(jiān)測(cè)的設(shè)備速度動(dòng)態(tài)調(diào)節(jié)切換門限的滯后余量。仿真結(jié)果表明了該算法可以有效降低設(shè)備的切換時(shí)延和切換失敗率。
-
關(guān)鍵詞:
- 網(wǎng)絡(luò)分簇 /
- 超密集網(wǎng)絡(luò) /
- 切換管理 /
- 滯后余量
Abstract: In the fifth generation (5G) mobile communication system, massive MIMO antenna and ultra dense deployment of the network are the two ways to achieve high throughput. To solve the mobility management problems in ultra dense clustering network, this paper presents a handover management algorithm that adjusts the hysteresis margin according to the movement of terminal equipment. In this algorithm, the handover is divided into pre-handover and official handover after clustering small base stations. The pre-handover helps to select the best target cell, complete resource reservation and pre-authentication. During the official handover, hysteresis margin of the handover threshold is adjusted according to the speed of the device. Simulation results show that it can effectively reduce the handover delay and probability of handover failure.-
Key words:
- Network cluster /
- Ultra dense network /
- Handover management /
- Hysteresis margin
-
HWANG I, SONG B, and SOLIMAN S S. A holistic view on hyper-dense heterogeneous and small cell networks[J]. IEEE Communications Magazine, 2013, 51(6): 20-27. HOADLEY J and MAVEDDAT P. Enabling small cell deployment with HetNet[J]. IEEE Wireless Communications, 2012, 19(2): 4-5. PIRINEN P. A brief overview of 5G research activities[C]. Proceedings of the 2014 IEEE International Conference on 5G for Ubiquitous Connectivity (5GU), Akaslompolo, 2014: 17-22. CHIHLIN I, ROWELL C, HAN S, et al. Toward green and soft: a 5G perspective[J]. IEEE Communications Magazine, 2014, 52(2): 66-73. MOON J and CHO D. Efficient handoff algorithm for inbound mobility in hierarchical macro/femto cell networks[J]. IEEE Communications Letters, 2009, 13(10): 755-757. 黃妙娜, 馮穗力, 陳軍, 等. LTE網(wǎng)絡(luò)中多目標(biāo)優(yōu)化的動(dòng)態(tài)負(fù)載均衡算法[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2152-2157. doi: 10.3724/SP.J.1146.2013.01777. HUANG Miaona, FENG Suili, CHEN Jun, et al. Dynamic Lload balancing acheme for multi-objective optimization in LTE networks[J]. Journal of Electronics Information Technology, 2014, 36(9): 2152-2157. doi: 10.3724/SP.J. 1146.- TERNON E, AGYAPONG P, HU L, et al. Energy savings in heterogeneous networks with clustered small cell deployments[C]. Proceedings of the 2014 IEEE International Conference on Wireless Communications Systems (ISWCS), Barcelona, 2014: 126-130. PARK S, SHIN Y, and SONG P. LTE-advanced mobility performance enhancement in dense small cell environment[C]. Proceedings of the 2013 IEEE International Conference on ICT Convergence (ICTC), Jeju, 2013: 262-267. PARK H, PARK A, LEE J, et al. Two-step handover for LTE HetNet mobility enhancements[C]. Proceedings of the 2013 IEEE International Conference on ICT Convergence (ICTC), Jeju, 2013: 763-766. YAN X, AHMET SEKERCIOGLU Y, and MANI N. A method for minimizing unnecessary handovers in heterogeneous wireless networks[C]. Proceedings of the 2008 IEEE International Conference on World of Wireless, Mobile Multimedia Networks, Newport Beach, CA, 2008: 1-5. RAPPAPORT T S. 無線通信原理與應(yīng)用(第2版)(英文版)[M]. 北京:電子工業(yè)出版社, 2013: 238-254. SHAYEA I, ISMAIL M, and NORDIN R. Advanced handover techniques in LTE-advanced system[C]. Proceedings of the 2012 IEEE International Conference on Computer Communication Engineering, Kuala Lumpur, 2012: 74-79. 3GPP TS 36.331 V9.4.0 Evolved Universal Terrestrial Radio Access (E-U-TRA); Radio Resource Control (RRC); Protocol specification (Release 9)[S]. 2010. DAMPAGE U and WAVEGEDARA C B. A low-latency and energy efficient forward handover scheme for LTE-femtocell networks[C]. Proceedings of the 2013 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, 2013: 53-58. CHIU C and HUANG C. Combined partial reuse and soft handover in OFDMA downlink transmission[C]. Proceedings of the 2008 IEEE International Conference on Vehicular Technology, Singapore, 2008: 1707-1711. 何堅(jiān), 萬志江, 劉金偉. 基于電源線和位置指紋的室內(nèi)定位技術(shù)[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2902-2908. doi: 10.3724/SP.J.1146.2013.02022. HE Jian, WANG Zhijiang, and LIU Jinwei. Indoor positioning technology based on powerline and location fingerprint[J]. Journal of Electronics Information Technology, 2014, 36(12): 2902-2908. doi: 10.3724/SP.J.1146.2013.02022. .01777. -
計(jì)量
- 文章訪問數(shù): 1719
- HTML全文瀏覽量: 199
- PDF下載量: 555
- 被引次數(shù): 0