物理層網(wǎng)絡(luò)編碼中連續(xù)相位調(diào)制信號的非相干多符號檢測
doi: 10.11999/JEIT150671 cstr: 32379.14.JEIT150671
-
1.
(南京航空航天大學(xué)電子信息工程學(xué)院 南京 210016) ②(東南大學(xué)信息科學(xué)與工程學(xué)院 南京 210096)
國家自然科學(xué)基金(61172078, 61201208),教育部留學(xué)回國人員科研啟動基金,中央高?;究蒲袠I(yè)務(wù)費(fèi)(NS2014038),南京航空航天大學(xué)研究生創(chuàng)新基地開放基金(kfjj20150404)
Noncoherent Multiple Symbol Detection for Continuous Phase Modulation in Physical-layer Network Coding
-
1.
(College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
-
2.
(College of Information Science and Engineering, Southeast University, Nanjing 210096, China)
The National Natural Science Foundation of China (61172078, 61201208), The State Education Ministry Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, The Fundamental Research Funds for the Central Universities (NS2014038), The Foundation of Graduate Innovation Center in NUAA (kfjj20150404)
-
摘要: 基于連續(xù)相位調(diào)制(CPM)的物理層網(wǎng)絡(luò)編碼(PNC)由于其高效的吞吐率和頻譜利用率特性引起了越來越多的關(guān)注?,F(xiàn)有關(guān)于CPM-PNC檢測的研究大多建立在到達(dá)中繼端的兩節(jié)點(diǎn)信號載波相位完全同步或相位差已知的基礎(chǔ)上。實(shí)際應(yīng)用中,這一載波相位差不可避免,也很難準(zhǔn)確估計。針對這一問題,該文提出一種中繼端存在未知載波相位差條件下的CPM-PNC非相干多符號檢測算法。該算法根據(jù)最大似然檢測原理,通過觀察多個碼元來實(shí)現(xiàn)中間碼元的檢測,充分利用了CPM信號的相位記憶特性。仿真結(jié)果表明,該文所提出的CPM-PNC非相干多符號檢測算法性能優(yōu)越。而且隨著觀察窗口長度的增大,其性能顯著提高并逐漸趨近最優(yōu)相干檢測性能。在誤碼率(BER)為10-4 時,相比于非相干單符號檢測,觀察窗口長度為5個碼元時的CPM-PNC非相干多符號檢測有6.7 dB的性能增益。
-
關(guān)鍵詞:
- 物理層網(wǎng)絡(luò)編碼 /
- 連續(xù)相位調(diào)制 /
- 非相干多符號檢測
Abstract: Physical-layer Network Coding (PNC) with Continuous Phase Modulation (CPM) attractes much attention due to its high efficiency in the throughput and the spectrum. Most present research on the detection of CPM-PNC signals is based on the assumption that signals transmitted from the two nodes arrivd at the relay haue perfect carrier synchronization or the carrier-phase offset is known. In practical applications, however, the carrier-phase offset is unavoidable and hard to estimate accurately. In this paper, a noncoherent multiple symbol detection algorithm for CPM-PNC signals is proposed to solve this problem. The proposed algorithm, which is based on the maximum likelihood principle, fully exploits the inherit memory of CPM signal and makes decision on the middle symbol by observing a group of symbols. Simulation results show that the performance of the proposed CPM-PNC noncoherent multiple symbol detection algorithm is superior. In addition, as the observation length gets larger, the performance of the proposed algorithm increases significantly and approaches that of CPM-PNC optimal coherent detection. When BER is10-4, compared with observation length of 1 symbol, the algorithm with observation length of 5 symbols achieves 6.7 dB performance gain. -
ZHANG S, LIEW S C, and LAM P P. Hot topic: physical- layer network coding[C]. Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, California, USA, 2006: 358-365. LEE N and HEATH R W. Space-time physical-layer network coding[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(2): 323-336. doi: 10.1109/JSAC. 2014.2384351. 黨小宇, 李強(qiáng), 虞湘賓, 等. 物理層網(wǎng)絡(luò)編碼的符號時鐘估計[J]. 電子與信息學(xué)報, 2015, 37(7): 1569-1574. doi: 10.11999/ JEIT141364. DANG Xiaoyu, LI Qiang, YU Xiangbin, et al. Symbol timing estimation for physical-layer network coding[J]. Journal of Electronic Information Technology, 2015, 37(7): 1569-1574. doi: 10.11999/JEIT141364. YANG T and COLLINGS I B. On the optimal design and performance of linear physical-layer network coding for fading two-way relay channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 956-967. doi: 10.1109/TWC. 2013.010214.130692. HEKRDLA M and SYKORA J. Hexagonal constellations for adaptive physical-layer network coding 2-way relaying[J]. IEEE Communications Letters, 2014, 18(2): 217-220. doi: 10.1109/LCOMM.2013.122713.132526. AULIN T and SUNDBERG C E. Continuous phase modulation-Part I: full response signaling[J]. IEEE Transactions on Communications, 1981, 29(3): 196-209. doi: 10.1109/TCOM.1981.1095001. SHA Nan, GAO Yuanyuan, YI Xiaoxin, et al. Joint serially concatenated continuous phase modulation and physical- layer network coding[C]. 4th IEEE International Conference on Information Science and Technology, Shenzhen, China, 2014: 506-509. doi: 10.1109/ICIST. 2014.6920527. 沙楠, 高媛媛, 益曉新, 等. 基于連續(xù)相位頻移鍵控調(diào)制的物理層網(wǎng)絡(luò)編碼檢測及性能分析[J]. 電子與信息學(xué)報, 2014, 36(6): 1454-1459. doi: 10.3724/SP.J.1146.2013.01201. SHA Nan, GAO Yuanyuan, YI Xiaoxin, et al. Physical-layer network coding based on CPFSK modulation detection and performance analysis[J]. Journal of Electronic Information Technology, 2014, 36(6): 1454-1459. doi: 10.3724/SP.J.1146. 2013.01201. ZHANG S, LIEW S C, and LAM P P. On the synchronization of physical-layer network coding[C]. Proceedings of the Information Theory Workshop, Chengdu, China, 2006: 404-408. doi: 10.1109/ITW2.2006.323830. LIEW S C, ZHANG S, and LU L. Physical-layer network coding: tutorial, survey, and beyond[J]. Physical Communication, 2013, 6: 4-42. doi: 10.1016/j.phycom. 2012. 05.002. SIMON M K. Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications[M]. California: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2001: 26-30. FISCHER R F, BENSE M, and STIERSTORFER C. Noncoherent joint decision-feedback detection in multi-user massive MIMO systems[C]. 18th International ITG Workshop on Smart Antennas, Erlangen, Germany, 2014: 1-8. ZHANG Chaozhu and LI Ke. Design and implementation of all-digital CPM demodulator based on software defined radio[C]. 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Shenyang, China, 2013: 817-820. doi: 10.1109/ IMCCC.2013.182. HESKETH T, DE LAMARE R C, and WALES S. Joint maximum likelihood detection and link selection for cooperative MIMO relay systems[J]. IET Communications, 2014, 8(14): 2489-2499. doi: 10.1049/iet-com.2013.0882. AMOROSO F. Pulse and spectrum manipulation in the minimum (frequency) shift keying (MSK) format[J]. IEEE Transactions on Communications, 1976, 24(3): 381-384. doi: 10.1109/TCOM.1976.1093294. PROAKIS J G and SALEHI M. Digital Communications[M].5th Ed., New York: McGraw-Hill, 2008: 251-255. -
計量
- 文章訪問數(shù): 1681
- HTML全文瀏覽量: 167
- PDF下載量: 411
- 被引次數(shù): 0