無信號內(nèi)干擾的相關(guān)延遲鍵控混沌通信方案
doi: 10.11999/JEIT150660 cstr: 32379.14.JEIT150660
-
1.
(南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003) ②(南京郵電大學(xué)自動化學(xué)院 南京 210003) ③(南京郵電大學(xué)電子科學(xué)與工程學(xué)院 南京 210003)
國家自然科學(xué)基金(61373136, 61401226),江蘇省研究生創(chuàng)新計劃(KYLX_0814)
Correlation Delay Shift Keying Chaotic Communication Scheme with No Intrasignal Interference
-
1.
(School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
-
2.
(School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
The National Natural Science Foundation of China (61373136, 61401226), Innovation Project for Graduate Education of Jiangsu Province (KYLX_0814)
-
摘要: 該文提出一種名為無信號內(nèi)干擾相關(guān)延遲鍵控(Correlation-Delay-Shift-Keying with No Intrasignal Interference, CDSK-NII)的新型混沌通信方案。采用重復(fù)混沌序列為參考信號,同時利用零和序列確保參考信號與信息信號嚴格正交,CDSK-NII能夠在解調(diào)過程中消除信號內(nèi)干擾。在高斯白噪聲信道和Rayleigh衰落信道中分析CDSK-NII的比特誤碼率。實驗結(jié)果表明:由于無信號內(nèi)干擾,CDSK-NII的比特誤碼率低于CDSK和通用相關(guān)延遲鍵控(GCDSK);隨著復(fù)幀長度的增加,CDSK-NII的性能將進一步提升,比特誤碼率低于參考自適應(yīng)相關(guān)延遲鍵控(RA-CDSK)。
-
關(guān)鍵詞:
- 混沌通信 /
- 相關(guān)延遲鍵控 /
- 信號內(nèi)干擾 /
- 比特誤碼率
Abstract: This paper proposes a novel chaotic communication scheme named Correlation-Delay-Shift-Keying with No Intrasignal Interference (CDSK-NII). By utilizing the repeated chaotic sequence as the reference signal and taking advantage of the zero-sum sequence to ensure the reference signal strictly orthogonal to the information- bearing signal, CDSK-NII can eliminate the intrasignal interference during the demodulation. The Bit Error Ratio (BER) of CDSK-NII is analyzed under AWGN channel and Rayleigh fading channel. Experiment results show that, due to no intrasignal interference, the BER of CDSK-NII is lower than that of CDSK and Generalized CDSK (GCDSK); with the length of multiframe increasing, the performance of CDSK-NII becomes better, and its BER is lower than that of Reference-Adaptive CDSK (RA-CDSK). -
席峰, 陳勝垚, 劉中. 混沌模擬信息轉(zhuǎn)換基于多射法的稀疏信號重構(gòu)[J]. 電子與信息學(xué)報, 2013, 35(3): 608-613. doi: 10.3724/SP.J.1146.2012.00905. XI Feng, CHEN Shengyao, and LIU Zhong. Chaotic analog-to-information conversion: sparse signal reconstruction with multiple shooting method[J]. Journal of Electronics Information Technology, 2013, 35(3): 608-613. doi: 10.3724/SP.J.1146.2012.00905. 陳勝垚, 席峰, 劉中. 多通道混沌調(diào)制模擬信息轉(zhuǎn)換[J]. 電子與信息學(xué)報, 2014, 36(1): 152-157. doi: 10.3724/SP.J.1146. 2013.00476. CHEN Shengyao, XI Feng, and LIU Zhong. Multi-channel chaotic modulation for analog-to-information conversion[J]. Journal of Electronics Information Technology, 2014, 36(1): 152-157. doi: 10.3724/SP.J.1146.2013.00476. 黃瓊丹, 李勇, 盧光躍. 脈間Costas跳頻脈內(nèi)多載波混沌相位編碼雷達信號設(shè)計與分析[J]. 電子與信息學(xué)報, 2015, 37(6): 1483-1489. doi: 10.11999/JEIT140653. HUANG Qiongdan, LI Yong, and LU Guangyue. Design and analysis of inter-pulse costas frequency hopping and intra-pulse multi-carrier chaotic phase coded radar signal[J]. Journal of Electronics Information Technology, 2015, 37(6): 1483-1489. doi: 10.11999/JEIT140653. DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chuas circuit[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1993, 40(10): 634-642. doi: ?10.1109/82.246164. KOLUMB?N G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: a robust coding for chaos communications[C]. Proceedings of the 4th International Workshop on Nonlinear Dynamics of Electronics Systems, Seville, 1996: 87-92. WANG Lin, MIN Xin, and CHEN Guanrong. Performance of FM-DCSK UWB system based on chaotic pulse cluster signals[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers, 2011, 58(9): 2259-2268. doi: 10.1109/TCSI. 2011.2112592. YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: a simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(12): 967-971. doi: 10.1109/TCSII.2014.2356914. SUSHCHIK M, TSIMRING L S, and Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(12): 1684-1691. doi: 10.1109/81.899920. TAM W M, LAU F C M, and TSE C K. Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers, 2006, 53(3): 712-721. doi: ?10.1109/TCSI.2005.858323. DUAN Junyi, JIANG Guoping, and YANG Hua. Reference-adaptive CDSK: an enhanced version of correlation delay shift keying[J]. IEEE Transactions on Circuits and System-II: Express Briefs, 2015, 62(1): 90-94. doi: 10.1109/ TCSII.2014.2362691. DING Q and WANG J N. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901-905. doi: 10.1049/iet-com.2010.0643. LEE Junhyun, AN Changyoung, KIM Bongjun, et al. Analysis of boss map according to delay time in CDSK system and proposed chaos system[C]. Proceedings of IEEE International Conference on Consumer Electronics, Las Vegas, 2015: 521-524. doi: 10.1109/ICCE.2015.7066509. DUAN Junyi, JIANG Guoping, and YANG Hua. Performance of a SIMO-CDSK system over rayleigh fading channels[J]. Mathematical Problems in Engineering, 2013: 1-7. doi: 10.1155/2013/532653. LEE Junhyun and RYU Heunggyoon. Diversity method in the chaos CDSK communication system[C]. Proceedings of 16th International Conference on Advanced Communication Technology, Pyeongchang, 2014: 1184-1187. doi: 10.1109/ ICACT.2014.6779145. GEISEL T and FAIREN V. Statistical properties of chaos in Chebyshev maps[J]. Physics Letters A, 1984, 105A(6): 263-266. doi: 10.1016/0375-9601(84)90993-9. CHERNOV N I. Limit theorems and Markov approximations for chaotic dynamical systems[J]. Probability Theory and Related Fields, 1995, 101(3): 321-362. doi: 10.1007/ F01200500. -
計量
- 文章訪問數(shù): 1490
- HTML全文瀏覽量: 189
- PDF下載量: 426
- 被引次數(shù): 0