一種加權(quán)均方誤差最小化的魯棒性干擾對齊算法
doi: 10.11999/JEIT150648 cstr: 32379.14.JEIT150648
基金項(xiàng)目:
國家863計(jì)劃項(xiàng)目(2015AA01A705),中電五十四所發(fā)展基金(X1228156)
A Robust Interference Alignment Algorithm Based on Weighted Mean Square Error Minimization
Funds:
The National 863 Program of China (2015AA01A705), The Development Fundation of CETC 54 (X1228156)
-
摘要: 線性干擾對齊的一個(gè)常見優(yōu)化目標(biāo)是總傳輸速率最大化,但因?yàn)楹退俾屎瘮?shù)的非凸特性而難以直接求解。加權(quán)均方誤差最小化算法借助均方誤差與和速率之間的等價(jià)關(guān)系解決了這一問題。這一方法需要獲得準(zhǔn)確的信道狀態(tài)信息,在實(shí)際應(yīng)用中,通道估計(jì)誤差的存在會導(dǎo)致算法性能的下降。該文提出一種改進(jìn)算法,在干擾對齊預(yù)編碼矩陣與接收矩陣的優(yōu)化求解過程中將通道估計(jì)誤差的統(tǒng)計(jì)特性考慮在內(nèi)。仿真結(jié)果表明,相比以往的加權(quán)均方誤差最小化算法,該文算法對信道估計(jì)誤差具有較高的魯棒性,可以有效提高總的傳輸速率。
-
關(guān)鍵詞:
- 干擾對齊 /
- MIMO /
- 預(yù)編碼 /
- 通道估計(jì)誤差
Abstract: Sum rate maximization is often used as the target of linear Interference Alignment (IA). However, the sum rate function is non-convex and hard to be solved. This problem is solved according to the relationship of mean square error and sum rate which is known as the Weighted Minimum Mean Square Error (WMMSE). This method relies on the knowledge of channel state information. In real systems, the channel estimation error may cause significant descent to the sum rate performance. This paper proposes an improved algorithm, which considers the statistical character of channel estimation error. Simulation results show that the proposed algorithm is robust to channel estimation error and improves the sum-rate efficiently, compared with the usual WMMSE method.-
Key words:
- Interference Alignment (IA) /
- MIMO /
- Pre-coding /
- Channel estimation error
-
CADAMBE V R and JAFAR S A. Interference alignment and degrees of freedom of the K-user interference channel[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3425-3441. doi: 10.1109/TIT.2008.926344. JAFAR S A. Interference alignmentA new look at signal dimensions in a communication network[J]. Foundations and Trends in Communications and Information Theory, 2011, 7(1): 1-134. doi: 10.1561/0100000047. RATHEESH M and DAVID M J. System-level performance of interference alignment[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 1060-1070. doi: 10.1109/TWC. 2014.2363677. GOMADAM K, CADAMBE V R, and JAFAR S A. Approaching the capacity of wireless networks through distributed interference alignment[C]. IEEE Global Telecommunications Conference, New Orleans, 2008: 1-6. doi: 10.1109/GLOCOM.2008.ECP.817. GOMADAM K, CADAMBE V R, and JAFAR S A. A distributed numerical approach to interference alignment and applications to wireless interference networks[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3309-3322. doi: 10.1109/TIT.2011.2142270. SHRESTHA R, BAE I, and KIM J M. A leakage-based solution for interference alignment in MIMO interference channel networks[J]. KSII Transactions on Internet and Information Systems, 2014, 8(2): 424-442. doi: 10.3837/ tiis.2014.02.006. 王勤民, 張忠培, 常青美, 等. 干擾通道中一種權(quán)值可調(diào)的迭代算法[J]. 電子與信息學(xué)報(bào), 2012, 34(12): 2851-2854. doi: 10.3724/ SP.J.1146.2012.00670. WANG Qinmin, ZHANG Zhongpei, CHANG Qingmei, et al. An iterative algorithm with adjustable weight for inference channel[J]. Journal of Electronics Information Technology, 2012, 34(12): 2851-2854. doi: 10.3724/SP.J.1146.2012.00670. 章?lián)P, 周正, 石磊, 等. 蜂窩網(wǎng)絡(luò)下行鏈路單回饋干擾對齊算法研究[J]. 電子與信息學(xué)報(bào), 2012, 34(12): 2817-2822. doi: 10.3724/SP.J.1146.2012.00583. ZHANG Yang, ZHOU Zheng, SHI Lei, et al. Interference alignment with single feedback for downlink cellular networks [J]. Journal of Electronics Information Technology, 2012, 34(12): 2817-2822. doi: 10.3724/SP.J.1146.2012.00583. PATCHARAMANEEPAKRON P and DOUFEXI A. Weighted sum capacity maximization using a modified leakage-based transmit filter design[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1177-1188. doi: 10.1109/TVT.2012.2230202. PATCHARAMANEEPAKRON P, ARMOUR S, and DOUFEXI A. Coordinated beamforming schemes based on modified signal-to- leakage-plus-noise ratio precoding designs[J]. IET Communications, 2015, 9(4): 558-567. doi: 10.1049/iet-com. 2014.0256. LIU H, DING Z G, FAN P Z, et al. Precoding design for interference suppression in multi-cell multi-user networks [J]. IET Communications, 2014, 8(9): 1534-1540. doi: 10. 1049/iet-com.2013.0757. SHI Q, RAZAVIYAYN M, LUO Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4331-4340. doi: 10.1109/ICASSP.2011.5946304. CHRISTENSEN S S, AGARWAL R, CARVALHO E, et al. Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design[J]. IEEE Transactions on Wireless Communications, 2008, 7(12): 4792-4799. doi: 10.1109/T-WC.2008.070851. KALEVA J, TOLLI A, and JUNTTI M. Weighted sum rate maximization for interfering broadcast channel via successive convex approximation[C]. IEEE Global Communications Conference, Anaheim, 2012: 3838-3843. doi: 10.1109/ GLOCOM.2012.6503715. SUN F and DE CARVALHO E. Weighted MMSE beamforming design for weighted sum-rate maximization in coordinated multi-cell MIMO systems[C]. IEEE Vehicular Technology Conference, Quebec, 2012: 1-5. doi: 10.1109/ VTCFall.2012.6399004. -
計(jì)量
- 文章訪問數(shù): 2252
- HTML全文瀏覽量: 392
- PDF下載量: 421
- 被引次數(shù): 0