一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

最小化類內(nèi)距離和分類算法

王曉初 王士同 包芳 蔣亦樟

王曉初, 王士同, 包芳, 蔣亦樟. 最小化類內(nèi)距離和分類算法[J]. 電子與信息學報, 2016, 38(3): 532-540. doi: 10.11999/JEIT150633
引用本文: 王曉初, 王士同, 包芳, 蔣亦樟. 最小化類內(nèi)距離和分類算法[J]. 電子與信息學報, 2016, 38(3): 532-540. doi: 10.11999/JEIT150633
WANG Xiaochu, WANG Shitong, BAO Fang, JIANG Yizhang. Intraclass-Distance-Sum-Minimization Based Classification Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(3): 532-540. doi: 10.11999/JEIT150633
Citation: WANG Xiaochu, WANG Shitong, BAO Fang, JIANG Yizhang. Intraclass-Distance-Sum-Minimization Based Classification Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(3): 532-540. doi: 10.11999/JEIT150633

最小化類內(nèi)距離和分類算法

doi: 10.11999/JEIT150633 cstr: 32379.14.JEIT150633
基金項目: 

國家自然科學基金(61170122, 61272210)

Intraclass-Distance-Sum-Minimization Based Classification Algorithm

Funds: 

The National Natural Science Foundation of China (61170122, 61272210)

  • 摘要: 支持向量機分類算法引入懲罰因子來調(diào)節(jié)過擬合和線性不可分時無解的問題,優(yōu)點是可以通過調(diào)節(jié)參數(shù)取得最優(yōu)解,但帶來的問題是允許一部分樣本錯分。錯分的樣本在分類間隔之間失去了約束,導致兩類交界處樣本雜亂分布,并且增加了訓練的負擔。為了解決上述問題,該文根據(jù)大間隔分類思想,基于類內(nèi)緊密類間松散的原則,提出一種新的分類算法,稱之為最小化類內(nèi)距離和(Intraclass-Distance-Sum-Minimization, IDSM)分類算法。該算法根據(jù)最小化類內(nèi)距離和準則構(gòu)造訓練模型,通過解析法求解得到最佳的映射法則,進而利用該最佳映射法則對樣本進行投影變換以達到類內(nèi)間隔小類間間隔大的效果。相應(yīng)地,為解決高維樣本分類問題,進一步提出了該文算法的核化版本。在大量UCI數(shù)據(jù)集和Yale大學人臉數(shù)據(jù)庫上的實驗結(jié)果表明了該文算法的優(yōu)越性。
  • QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
    QUINLAN J R. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 77-90.
    PENG F, SCHUURMANS D, and WANG S. Augmenting naive Bayes classifiers with statistical language models[J]. Information Retrieval, 2004, 7(3/4): 317-345.
    CHENG J and GREINER R. Comparing Bayesian network classifiers[C]. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 1999: 101-108.
    COVER T and HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
    BIJALWAN V, KUMAR V, KUMARI P, et al. KNN based machine learning approach for text and document mining[J]. International Journal of Database Theory and Application, 2014, 7(1): 61-70.
    黃劍華, 丁建睿, 劉家鋒, 等. 基于局部加權(quán)的Citation-kNN算法[J]. 電子與信息學報, 2013, 35(3): 627-632.
    HUANG Jianhua, DING Jianrui, LIU Jiafeng, et al. Citation- kNN algorithm based on locally-weighting[J]. Journal of Electronics Information Technology, 2013, 35(3): 627-632.
    WELLING M. Fisher linear discriminant analysis[J]. Department of Computer Science, 2008, 16(94): 237-280.
    FUIN N, PEDEMONTE S, ARRIDGE S, et al. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix[J]. IEEE Transactions on Medical Imaging, 2014, 33(3): 618-635.
    DUFRENOIS F. A one-class kernel fisher criterion for outlier detection[J]. IEEE Transactions on Neural Networks Learning Systems, 2014, 26(5): 982-994.
    VAN Ooyen A and NIENHUIS B. Improving the convergence of the back-propagation algorithm[J]. Neural Networks, 1992, 5(3): 465-471.
    潘舟浩, 李道京, 劉波, 等. 基于BP算法和時變基線的機載InSAR數(shù)據(jù)處理方法研究[J]. 電子與信息學報, 2014, 36(7): 1585-1591.
    PAN Zhouhao, LI Daojing, LIU Bo, et al. Processing of the airborne InSAR data based on the BP algorithm and the time-varying baseline[J] Journal of Electronics Information Technology, 2014, 36(7): 1585-1591.
    SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    胡文軍, 王士同, 王娟, 等. 非線性分類的分割超平面快速集成方法[J]. 電子與信息學報, 2012, 34(3): 535-542.
    HU Wenjun, WANG Shitong, WANG Juan, et al. Fast ensemble of separating hyperplanes for nonlinear classification[J]. Journal of Electronics Information Technology, 2012, 34(3): 535-542.
    GAO X, LU T, LIU P, et al. A soil moisture classification model based on SVM used in agricultural WSN[C]. 2014 IEEE 7th Joint International, Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 2014: 432-436.
    RIES C X, RICHTER F, ROMBERG S, et al. Automatic object annotation from weakly labeled data with latent structured SVM[C]. 2014 12th IEEE International Workshop on Content-based Multimedia Indexing (CBMI), Klagenfurt, Austria, 2014: 1-4.
    PLATT J. Fast training of support vector machines using sequential minimal optimization[J]. Advances in Kernel Methods: Support Vector Learning, 1999(3): 185-208.
    JOACHIMS T. Making large scale SVM learning practical[R]. Universit?t Dortmund, 1999.
    CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems Technology, 2011, 2(3): 389-396.
    MANGASARIAN O L and MUSICANT D R. Lagrangian support vector machines[J]. The Journal of Machine Learning Research, 2001, 1(3): 161-177.
    SEOK K. Semi-supervised regression based on support vector machine[J]. Computer Engineering Applications, 2014, 25(2): 447-454.
    LENG Y, XU X, and QI G. Combining active learning and semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44(1): 121-131.
    CHEN W J, SHAO Y H, XU D K, et al. Manifold proximal support vector machine for semi-supervised classification[J]. Applied Intelligence, 2014, 40(4): 623-638.
    李紅蓮, 王春花, 袁保宗. 一種改進的支持向量機NN- SVM[J]. 計算機學報, 2003, 26(8): 1015-1020.
    LI Honglian, WANG Chunhua, and YUAN Baozong. An improved SVM: NN-SVM[J]. Chinese Journal of Computers, 2003, 26(8): 1015-1020.
    陳寶林. 最優(yōu)化理論與算法[M]. 北京: 清華大學出版社, 2005: 281-322.
    CHEN Baolin. Optimization Theory and Algorithm[M]. Beijing, Tsinghua University Press, 2005: 281-322.
    YOSHIYAMA K and SAKURAI A. Laplacian minimax probability machine[J]. Pattern Recognition Letters, 2014, 37: 192-200.
    MIGLIORATI G. Adaptive polynomial approximation by means of random discrete least squares[J]. Lecture Notes in Computational Science Engineering, 2013, 103: 547-554.
    HUANG K, YANG H, KING I, et al. The minimum error minimax probability machine[J]. The Journal of Machine Learning Research, 2004(5): 1253-1286.
    PLAN Y and VERSHYNIN R. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach[J]. IEEE Transactions on Information Theory, 2013, 59(1): 482-494.
    ALIZADEN F. Interior point methods in semidefinite programming with applications to combinatorial optimization[J]. SIAM Journal on Optimization, 1995, 5(1): 13-51.
    BOYD S and VANDENBERGHE L. Convex Optimi- zation[M]. Cambridge University Press, 2009: 127- 214.
    邊肇祺, 張學工. 模式識別[M]. 北京: 清華大學出版社, 2001: 83-90.
    BIAN Zhaoqi and ZHANG Xuegong. Pattern Recognition[M]. Beijing, Tsinghua University Press, 2001: 83-90.
  • 加載中
計量
  • 文章訪問數(shù):  1409
  • HTML全文瀏覽量:  230
  • PDF下載量:  796
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-27
  • 修回日期:  2015-09-22
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回