一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于圖的流形排序的顯著性目標(biāo)檢測(cè)改進(jìn)方法

呂建勇 唐振民

呂建勇, 唐振民. 一種基于圖的流形排序的顯著性目標(biāo)檢測(cè)改進(jìn)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
引用本文: 呂建勇, 唐振民. 一種基于圖的流形排序的顯著性目標(biāo)檢測(cè)改進(jìn)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619
Citation: Lü Jian-yong, Tang Zhen-min. An Improved Graph-based Manifold Ranking for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619

一種基于圖的流形排序的顯著性目標(biāo)檢測(cè)改進(jìn)方法

doi: 10.11999/JEIT150619 cstr: 32379.14.JEIT150619
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61473154)

An Improved Graph-based Manifold Ranking for Salient Object Detection

Funds: 

The National Natural Science Foundation of China (61473154)

  • 摘要: 該文針對(duì)現(xiàn)有的基于圖的流形排序的顯著性目標(biāo)檢測(cè)方法中僅使用k-正則圖刻畫各個(gè)節(jié)點(diǎn)的空間連接性的不足以及先驗(yàn)背景假設(shè)過于理想化的缺陷,提出一種改進(jìn)的方法,旨在保持高查全率的同時(shí),提高準(zhǔn)確率。在構(gòu)造圖模型時(shí),先采用仿射傳播聚類將各超像素(節(jié)點(diǎn))自適應(yīng)地劃分為不同的顏色類,在傳統(tǒng)的k-正則圖的基礎(chǔ)上,將屬于同一顏色類且空間上位于同一連通區(qū)域的各個(gè)節(jié)點(diǎn)也連接在一起;而在選取背景種子點(diǎn)時(shí),根據(jù)邊界連接性賦予位于圖像邊界的超像素不同的背景權(quán)重,采用圖割方法篩選出真正的背景種子點(diǎn);最后,采用經(jīng)典的流形排序算法計(jì)算顯著性。在常用的MSRA-1000和復(fù)雜的SOD數(shù)據(jù)庫(kù)上同7種流行算法的4種量化評(píng)價(jià)指標(biāo)的實(shí)驗(yàn)對(duì)比證明了所提改進(jìn)算法的有效性和優(yōu)越性。
  • Li W T, Chang H S, Lien K C, et al.. Exploring visual and motion saliency for automatic video object extraction[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2600-2610.
    Chen D Y and Luo Y S. Preserving motion-tolerant contextual visual saliency for video resizing[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1616-1627.
    姜維, 盧朝陽(yáng), 李靜, 等. 基于視覺顯著性和提升框架的場(chǎng)景文字背景抑制方法[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 617-623.
    Jiang Wei, Lu Chao-yang, Li Jing, et al.. Visual saliency and boosting based background suppression for scene text[J]. Journal of Electronics Information Technology, 2014, 36(3): 617-623.
    Borji A and Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    錢生, 陳宗海, 林名強(qiáng), 等. 基于條件隨機(jī)場(chǎng)和圖像分割的顯著性檢測(cè)[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(4): 711-724.
    Qian Sheng, Chen Zong-hai, Lin Ming-qiang, et al.. Saliency detection based on conditional random field and image segmentation[J]. Acta Automatica Sinica, 2015, 41(4): 711-724.
    Borji A, Sihite D N, and Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
    Borji A, Sihite D N, and Itti L. Salient object detection: a benchmark[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 414-429.
    Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the International Conference on Computer Vision Systems, Heraklion, 2008: 66-75.
    Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1597-1604.
    Cheng M M, Zhang G X, Mitra N J, et al.. Global contrast based salient region detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011: 409-416.
    Goferman S, Zelnik-Manor L, and Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.
    Jiang H, Wang J, Yuan Z, et al.. Automatic salient object segmentation based on context and shape prior[C]. Proceedings of the British Machine Vision Conference, Dundee, 2011: 110.1-110.12.
    Cheng M M, Jonathan W, Lin W Y, et al.. Efficient salient region detection with soft image abstraction[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1529-1536.
    Xie Y L, Lu H C, and Yang M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5): 1689-1698.
    Wei Y C, Wen F, Zhu W J, et al.. Geodesic saliency using background priors[C]. Proceedings of the European Conference on Computer Vision, Florence, 2012: 29-42.
    Zhu W J, Liang S, Wei Y C, et al.. Saliency optimization from robust background detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
    蔣寓文, 譚樂怡, 王守覺. 選擇性背景優(yōu)先的顯著性檢測(cè)模型[J]. 電子與信息學(xué)報(bào), 2015, 37(1): 130-136.
    Jiang Yu-wen, Tan Le-yi, and Wang Shou-jue. Saliency detected model based on selective edges prior[J]. Journal of Electronics Information Technology, 2015, 37(1): 130-136.
    徐威, 唐振民. 利用層次先驗(yàn)估計(jì)的顯著性目標(biāo)檢測(cè)[J]. 自動(dòng)化學(xué)報(bào), 2015, 41(4): 799-812.
    Xu Wei and Tang Zhen-min. Exploiting hierarchical prior estimation for salient object detection[J]. Acta Automatica Sinica, 2015, 41(4): 799-812.
    Jiang B W, Zhang L H, Lu H C, et al.. Saliency detection via absorbing markov chain[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 1665-1672.
    Yang C, Zhang L H, Lu H C, et al.. Saliency detection via graph-based manifold ranking[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 3166-3173.
    Cheng X, Du P, Guo J, et al.. Ranking on data manifold with sink points[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(1): 177-191.
    Achanta R, Shaji A, Smith K, et al.. SLIC superpixles compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    Frey B J and Dueck D. Clustering by passing message between data points[J]. Science, 2007, 315(5814): 972-976.
    Boykov Y and Jolly M P. Interactive graph cuts for optimal boundary region segmentation of objects in N-D images[C]. Proceedings of the IEEE International Conference on Computer Vision, Vancouver, 2001: 105-112.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1763
  • HTML全文瀏覽量:  177
  • PDF下載量:  1271
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回